Cargando…
Exploring density rectification and domain adaption method for crowd counting
Crowd counting has received increasing attention due to its important roles in multiple fields, such as social security, commercial applications, epidemic prevention and control. To this end, we explore two critical issues that seriously affect the performance of crowd counting including nonuniform...
Autores principales: | Peng, Sifan, Yin, Baoqun, Yang, Qianqian, He, Qing, Wang, Luyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568950/ https://www.ncbi.nlm.nih.gov/pubmed/36267471 http://dx.doi.org/10.1007/s00521-022-07917-8 |
Ejemplares similares
-
Congested Crowd Counting via Adaptive Multi-Scale Context Learning †
por: Zhang, Yani, et al.
Publicado: (2021) -
Counting Crowds with Perspective Distortion Correction via Adaptive Learning
por: Sun, Yixuan, et al.
Publicado: (2020) -
Foreground Segmentation-Based Density Grading Networks for Crowd Counting
por: Liu, Zelong, et al.
Publicado: (2023) -
An Adaptive Multi-Scale Network Based on Depth Information for Crowd Counting †
por: Zhang, Peng, et al.
Publicado: (2023) -
MiCrowd: Vision-Based Deep Crowd Counting on MCU
por: Son, Sungwook, et al.
Publicado: (2023)