Cargando…
Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis
Staphylococci and streptococci are common causes of intramammary infection in small ruminants, and reliable species identification is crucial for understanding epidemiology and impact on animal health and welfare. We applied MALDI-TOF MS and gap PCR–RFLP to 204 non-aureus staphylococci (NAS) and mam...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569034/ https://www.ncbi.nlm.nih.gov/pubmed/36243811 http://dx.doi.org/10.1186/s13567-022-01102-4 |
_version_ | 1784809776405807104 |
---|---|
author | Rosa, Nives Maria Penati, Martina Fusar-Poli, Sara Addis, Maria Filippa Tola, Sebastiana |
author_facet | Rosa, Nives Maria Penati, Martina Fusar-Poli, Sara Addis, Maria Filippa Tola, Sebastiana |
author_sort | Rosa, Nives Maria |
collection | PubMed |
description | Staphylococci and streptococci are common causes of intramammary infection in small ruminants, and reliable species identification is crucial for understanding epidemiology and impact on animal health and welfare. We applied MALDI-TOF MS and gap PCR–RFLP to 204 non-aureus staphylococci (NAS) and mammaliicocci (NASM) and to 57 streptococci isolated from the milk of sheep and goats with mastitis. The top identified NAS was Staphylococcus epidermidis (28.9%) followed by Staph. chromogenes (27.9%), haemolyticus (15.7%), caprae, and simulans (6.4% each), according to both methods (agreement rate, AR, 100%). By MALDI-TOF MS, 13.2% were Staph. microti (2.9%), xylosus (2.0%), equorum, petrasii and warneri (1.5% each), Staph. sciuri (now Mammaliicoccus sciuri, 1.0%), arlettae, capitis, cohnii, lentus (now M. lentus), pseudintermedius, succinus (0.5% each), and 3 isolates (1.5%) were not identified. PCR–RFLP showed 100% AR for Staph. equorum, warneri, arlettae, capitis, and pseudintermedius, 50% for Staph. xylosus, and 0% for the remaining NASM. The top identified streptococcus was Streptococcus uberis (89.5%), followed by Strep. dysgalactiae and parauberis (3.5% each) and by Strep. gallolyticus (1.8%) according to both methods (AR 100%). Only one isolate was identified as a different species by MALDI-TOF MS and PCR–RFLP. In conclusion, MALDI-TOF MS and PCR–RFLP showed a high level of agreement in the identification of the most prevalent NAS and streptococci causing small ruminant mastitis. Therefore, gap PCR–RFLP can represent a good identification alternative when MALDI-TOF MS is not available. Nevertheless, some issues remain for Staph. haemolyticus, minor NAS species including Staph. microti, and species of the novel genus Mammaliicoccus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13567-022-01102-4. |
format | Online Article Text |
id | pubmed-9569034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-95690342022-10-16 Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis Rosa, Nives Maria Penati, Martina Fusar-Poli, Sara Addis, Maria Filippa Tola, Sebastiana Vet Res Research Article Staphylococci and streptococci are common causes of intramammary infection in small ruminants, and reliable species identification is crucial for understanding epidemiology and impact on animal health and welfare. We applied MALDI-TOF MS and gap PCR–RFLP to 204 non-aureus staphylococci (NAS) and mammaliicocci (NASM) and to 57 streptococci isolated from the milk of sheep and goats with mastitis. The top identified NAS was Staphylococcus epidermidis (28.9%) followed by Staph. chromogenes (27.9%), haemolyticus (15.7%), caprae, and simulans (6.4% each), according to both methods (agreement rate, AR, 100%). By MALDI-TOF MS, 13.2% were Staph. microti (2.9%), xylosus (2.0%), equorum, petrasii and warneri (1.5% each), Staph. sciuri (now Mammaliicoccus sciuri, 1.0%), arlettae, capitis, cohnii, lentus (now M. lentus), pseudintermedius, succinus (0.5% each), and 3 isolates (1.5%) were not identified. PCR–RFLP showed 100% AR for Staph. equorum, warneri, arlettae, capitis, and pseudintermedius, 50% for Staph. xylosus, and 0% for the remaining NASM. The top identified streptococcus was Streptococcus uberis (89.5%), followed by Strep. dysgalactiae and parauberis (3.5% each) and by Strep. gallolyticus (1.8%) according to both methods (AR 100%). Only one isolate was identified as a different species by MALDI-TOF MS and PCR–RFLP. In conclusion, MALDI-TOF MS and PCR–RFLP showed a high level of agreement in the identification of the most prevalent NAS and streptococci causing small ruminant mastitis. Therefore, gap PCR–RFLP can represent a good identification alternative when MALDI-TOF MS is not available. Nevertheless, some issues remain for Staph. haemolyticus, minor NAS species including Staph. microti, and species of the novel genus Mammaliicoccus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13567-022-01102-4. BioMed Central 2022-10-15 2022 /pmc/articles/PMC9569034/ /pubmed/36243811 http://dx.doi.org/10.1186/s13567-022-01102-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Rosa, Nives Maria Penati, Martina Fusar-Poli, Sara Addis, Maria Filippa Tola, Sebastiana Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis |
title | Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis |
title_full | Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis |
title_fullStr | Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis |
title_full_unstemmed | Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis |
title_short | Species identification by MALDI-TOF MS and gap PCR–RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis |
title_sort | species identification by maldi-tof ms and gap pcr–rflp of non-aureus staphylococcus, mammaliicoccus, and streptococcus spp. associated with sheep and goat mastitis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569034/ https://www.ncbi.nlm.nih.gov/pubmed/36243811 http://dx.doi.org/10.1186/s13567-022-01102-4 |
work_keys_str_mv | AT rosanivesmaria speciesidentificationbymalditofmsandgappcrrflpofnonaureusstaphylococcusmammaliicoccusandstreptococcussppassociatedwithsheepandgoatmastitis AT penatimartina speciesidentificationbymalditofmsandgappcrrflpofnonaureusstaphylococcusmammaliicoccusandstreptococcussppassociatedwithsheepandgoatmastitis AT fusarpolisara speciesidentificationbymalditofmsandgappcrrflpofnonaureusstaphylococcusmammaliicoccusandstreptococcussppassociatedwithsheepandgoatmastitis AT addismariafilippa speciesidentificationbymalditofmsandgappcrrflpofnonaureusstaphylococcusmammaliicoccusandstreptococcussppassociatedwithsheepandgoatmastitis AT tolasebastiana speciesidentificationbymalditofmsandgappcrrflpofnonaureusstaphylococcusmammaliicoccusandstreptococcussppassociatedwithsheepandgoatmastitis |