Cargando…
MSPCD: predicting circRNA-disease associations via integrating multi-source data and hierarchical neural network
BACKGROUND: Increasing evidence shows that circRNA plays an essential regulatory role in diseases through interactions with disease-related miRNAs. Identifying circRNA-disease associations is of great significance to precise diagnosis and treatment of diseases. However, the traditional biological ex...
Autores principales: | Deng, Lei, Liu, Dayun, Li, Yizhan, Wang, Runqi, Liu, Junyi, Zhang, Jiaxuan, Liu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569055/ https://www.ncbi.nlm.nih.gov/pubmed/36241972 http://dx.doi.org/10.1186/s12859-022-04976-5 |
Ejemplares similares
-
GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions
por: He, Jie, et al.
Publicado: (2022) -
XGBCDA: a multiple heterogeneous networks-based method for predicting circRNA-disease associations
por: Shen, Siyuan, et al.
Publicado: (2022) -
Correction to: XGBCDA: a multiple heterogeneous networks-based method for predicting circRNA-disease associations
por: Shen, Siyuan, et al.
Publicado: (2023) -
MSCFS: inferring circRNA functional similarity based on multiple data sources
por: Shu, Liang, et al.
Publicado: (2021) -
CCRDB: a cancer circRNAs-related database and its application in hepatocellular carcinoma-related circRNAs
por: Liu, Qingyu, et al.
Publicado: (2019)