Cargando…
A risk factor attention-based model for cardiovascular disease prediction
BACKGROUND: Cardiovascular disease (CVD) is a serious disease that endangers human health and is one of the main causes of death. Therefore, using the patient’s electronic medical record (EMR) to predict CVD automatically has important application value in intelligent assisted diagnosis and treatmen...
Autores principales: | Qiu, Yanlong, Wang, Wei, Wu, Chengkun, Zhang, Zhichang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569064/ https://www.ncbi.nlm.nih.gov/pubmed/36241999 http://dx.doi.org/10.1186/s12859-022-04963-w |
Ejemplares similares
-
Enhanced character-level deep convolutional neural networks for cardiovascular disease prediction
por: Zhang, Zhichang, et al.
Publicado: (2020) -
Mining microbe–disease interactions from literature via a transfer learning model
por: Wu, Chengkun, et al.
Publicado: (2021) -
Risk prediction model for cardiovascular diseases in adults initiating pharmacological treatment for attention-deficit/hyperactivity disorder
por: Dobrosavljevic, Maja, et al.
Publicado: (2022) -
Machine learning models for predicting the risk factor of carotid plaque in cardiovascular disease
por: Bin, Chengling, et al.
Publicado: (2023) -
Attention-based deep residual learning network for entity relation extraction in Chinese EMRs
por: Zhang, Zhichang, et al.
Publicado: (2019)