Cargando…
Hybrid Fine-Tuning Strategy for Few-Shot Classification
Few-shot classification aims to enable the network to acquire the ability of feature extraction and label prediction for the target categories given a few numbers of labeled samples. Current few-shot classification methods focus on the pretraining stage while fine-tuning by experience or not at all....
Autores principales: | Zhao, Lei, Ou, Zhonghua, Zhang, Lixun, Li, Shuxiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569229/ https://www.ncbi.nlm.nih.gov/pubmed/36254202 http://dx.doi.org/10.1155/2022/9620755 |
Ejemplares similares
-
Few-Shot Fine-Grained Image Classification via GNN
por: Zhou, Xiangyu, et al.
Publicado: (2022) -
Feature fusion network based on few-shot fine-grained classification
por: Yang, Yajie, et al.
Publicado: (2023) -
Weakly Correlated Knowledge Integration for Few-shot Image Classification
por: Yang, Chun, et al.
Publicado: (2022) -
Few-Shot Text Classification with Global–Local Feature Information
por: Wang, Depei, et al.
Publicado: (2022) -
Efficient few-shot machine learning for classification of EBSD patterns
por: Kaufmann, Kevin, et al.
Publicado: (2021)