Cargando…
Detecting the ultra low dimensionality of real networks
Reducing dimension redundancy to find simplifying patterns in high-dimensional datasets and complex networks has become a major endeavor in many scientific fields. However, detecting the dimensionality of their latent space is challenging but necessary to generate efficient embeddings to be used in...
Autores principales: | Almagro, Pedro, Boguñá, Marián, Serrano, M. Ángeles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569339/ https://www.ncbi.nlm.nih.gov/pubmed/36243754 http://dx.doi.org/10.1038/s41467-022-33685-z |
Ejemplares similares
-
The geometric nature of weights in real complex networks
por: Allard, Antoine, et al.
Publicado: (2017) -
The D-Mercator method for the multidimensional hyperbolic embedding of real networks
por: Jankowski, Robert, et al.
Publicado: (2023) -
Deciphering the global organization of clustering in real complex networks
por: Colomer-de-Simón, Pol, et al.
Publicado: (2013) -
The interconnected wealth of nations: Shock propagation on global trade-investment multiplex networks
por: Starnini, Michele, et al.
Publicado: (2019) -
Regulation of burstiness by network-driven activation
por: García-Pérez, Guillermo, et al.
Publicado: (2015)