Cargando…
LACpG10-HL Functions Effectively in Antibiotic-Free and Healthy Husbandry by Improving the Innate Immunity
Antibiotics are broadly restricted in modern husbandry farming, necessitating the need for efficient and low-cost immunomodulatory preparations in antibiotic-free and healthful farming. As is known to all, CpG oligonucleotides (CpG-ODNs, an effective innate immunostimulatory agent) recognized by TLR...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569488/ https://www.ncbi.nlm.nih.gov/pubmed/36232768 http://dx.doi.org/10.3390/ijms231911466 |
Sumario: | Antibiotics are broadly restricted in modern husbandry farming, necessitating the need for efficient and low-cost immunomodulatory preparations in antibiotic-free and healthful farming. As is known to all, CpG oligonucleotides (CpG-ODNs, an effective innate immunostimulatory agent) recognized by TLR9 in mammals (while TLR21 in avians) could collaborate with some united agent to induce stronger immune responses, but the cost is prohibitively expensive for farmers. Here, considering the coordination between TLR2 and TLR9/TLR21, we firstly proposed the idea that the well-fermented Lactococcus lactis could be utilized as a CpG-plasmid carrier (LACpG10) to enhance the host’s innate immunity against pathogenic invasion. In the present study, after obtaining LACpG10-HL from homogenized and lyophilized recombinant strain LACpG10, we treated primary chicken lymphocytes, two cell lines (HD11 and IPEC-J2), and chickens with LACpG10-HL, CpG plasmids (pNZ8148-CpG10), and other stimulants, and respectively confirmed the effects by conducting qRT-PCR, bacterial infection assays, and a zoological experiment. Our data showed that LACpG10-HL could induce excellent innate immunity by regulating autophagy reactions, cytokine expression, and motivating PRRs. Interestingly, despite having no direct antiseptic effect, LACpG10-HL improved the antibacterial capacities of lymphocytes and enterocytes at the first line of defense. Most importantly, water-supplied LACpG10-HL treatment reduced the average adverse event rates, demonstrating that LACpG10-HL maintained its excellent immunostimulatory and protective properties under farming conditions. Our research not only contributes to revealing the satisfactory effects of LACpG10-HL but also sheds new light on a cost-effective solution with optimal immune effects in green, antibiotic-free, and healthful husbandry farming. |
---|