Cargando…

Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling

Dopamine D4 receptor (D4R) mechanisms are implicated in psychiatric diseases characterized by cognitive deficits, including schizophrenia, ADHD, and autism. The cellular mechanisms are poorly understood, but impaired neuronal synchronization in cortical networks was proposed to contribute to these d...

Descripción completa

Detalles Bibliográficos
Autores principales: Thörn, Carolina Wilnerzon, Kafetzopoulos, Vasilios, Kocsis, Bernat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569525/
https://www.ncbi.nlm.nih.gov/pubmed/36233007
http://dx.doi.org/10.3390/ijms231911705
_version_ 1784809875559153664
author Thörn, Carolina Wilnerzon
Kafetzopoulos, Vasilios
Kocsis, Bernat
author_facet Thörn, Carolina Wilnerzon
Kafetzopoulos, Vasilios
Kocsis, Bernat
author_sort Thörn, Carolina Wilnerzon
collection PubMed
description Dopamine D4 receptor (D4R) mechanisms are implicated in psychiatric diseases characterized by cognitive deficits, including schizophrenia, ADHD, and autism. The cellular mechanisms are poorly understood, but impaired neuronal synchronization in cortical networks was proposed to contribute to these deficits. In animal experiments, D4R activation was shown to generate aberrant increased gamma oscillations and to reduce performance on cognitive tasks requiring functional prefrontal cortex (PFC) and hippocampus (HPC) networks. While fast oscillations in the gamma range are important for local synchronization within neuronal ensembles, long-range synchronization between distant structures is achieved by slow rhythms in the delta, theta, alpha ranges. The characteristics of slow oscillations vary between structures during cognitive tasks. HPC activity is dominated by theta rhythm, whereas PFC generates unique oscillations in the 2–4 Hz range. In order to investigate the role of D4R on slow rhythms, cortical activity was recorded in rats under urethane anesthesia in which slow oscillations can be elicited in a controlled manner without behavioral confounds, by electrical stimulation of the brainstem reticular formation. The local field potential segments during stimulations were extracted and subjected to fast Fourier transform to obtain power density spectra. The selective D4R agonist A-412997 (5 and 10 mg/kg) and antagonists L-745870 (5 and 10 mg/kg) were injected systemically and the peak power in the two frequency ranges were compared before and after the injection. We found that D4R compounds significantly changed the activity of both HPC and PFC, but the direction of the effect was opposite in the two structures. D4R agonist enhanced PFC slow rhythm (delta, 2–4 Hz) and suppressed HPC theta, whereas the antagonist had an opposite effect. Analogous changes of the two slow rhythms were also found in the thalamic nucleus reuniens, which has connections to both forebrain structures. Slow oscillations play a key role in interregional cortical coupling; delta and theta oscillations were shown in particular, to entrain neuronal firing and to modulate gamma activity in interconnected forebrain structures with a relative HPC theta dominance over PFC. Thus, the results of this study indicate that D4R activation may introduce an abnormal bias in the bidirectional PFC–HPC coupling which can be reversed by D4R antagonists.
format Online
Article
Text
id pubmed-9569525
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95695252022-10-17 Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling Thörn, Carolina Wilnerzon Kafetzopoulos, Vasilios Kocsis, Bernat Int J Mol Sci Article Dopamine D4 receptor (D4R) mechanisms are implicated in psychiatric diseases characterized by cognitive deficits, including schizophrenia, ADHD, and autism. The cellular mechanisms are poorly understood, but impaired neuronal synchronization in cortical networks was proposed to contribute to these deficits. In animal experiments, D4R activation was shown to generate aberrant increased gamma oscillations and to reduce performance on cognitive tasks requiring functional prefrontal cortex (PFC) and hippocampus (HPC) networks. While fast oscillations in the gamma range are important for local synchronization within neuronal ensembles, long-range synchronization between distant structures is achieved by slow rhythms in the delta, theta, alpha ranges. The characteristics of slow oscillations vary between structures during cognitive tasks. HPC activity is dominated by theta rhythm, whereas PFC generates unique oscillations in the 2–4 Hz range. In order to investigate the role of D4R on slow rhythms, cortical activity was recorded in rats under urethane anesthesia in which slow oscillations can be elicited in a controlled manner without behavioral confounds, by electrical stimulation of the brainstem reticular formation. The local field potential segments during stimulations were extracted and subjected to fast Fourier transform to obtain power density spectra. The selective D4R agonist A-412997 (5 and 10 mg/kg) and antagonists L-745870 (5 and 10 mg/kg) were injected systemically and the peak power in the two frequency ranges were compared before and after the injection. We found that D4R compounds significantly changed the activity of both HPC and PFC, but the direction of the effect was opposite in the two structures. D4R agonist enhanced PFC slow rhythm (delta, 2–4 Hz) and suppressed HPC theta, whereas the antagonist had an opposite effect. Analogous changes of the two slow rhythms were also found in the thalamic nucleus reuniens, which has connections to both forebrain structures. Slow oscillations play a key role in interregional cortical coupling; delta and theta oscillations were shown in particular, to entrain neuronal firing and to modulate gamma activity in interconnected forebrain structures with a relative HPC theta dominance over PFC. Thus, the results of this study indicate that D4R activation may introduce an abnormal bias in the bidirectional PFC–HPC coupling which can be reversed by D4R antagonists. MDPI 2022-10-03 /pmc/articles/PMC9569525/ /pubmed/36233007 http://dx.doi.org/10.3390/ijms231911705 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Thörn, Carolina Wilnerzon
Kafetzopoulos, Vasilios
Kocsis, Bernat
Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling
title Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling
title_full Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling
title_fullStr Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling
title_full_unstemmed Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling
title_short Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling
title_sort differential effect of dopamine d4 receptor activation on low-frequency oscillations in the prefrontal cortex and hippocampus may bias the bidirectional prefrontal–hippocampal coupling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569525/
https://www.ncbi.nlm.nih.gov/pubmed/36233007
http://dx.doi.org/10.3390/ijms231911705
work_keys_str_mv AT thorncarolinawilnerzon differentialeffectofdopamined4receptoractivationonlowfrequencyoscillationsintheprefrontalcortexandhippocampusmaybiasthebidirectionalprefrontalhippocampalcoupling
AT kafetzopoulosvasilios differentialeffectofdopamined4receptoractivationonlowfrequencyoscillationsintheprefrontalcortexandhippocampusmaybiasthebidirectionalprefrontalhippocampalcoupling
AT kocsisbernat differentialeffectofdopamined4receptoractivationonlowfrequencyoscillationsintheprefrontalcortexandhippocampusmaybiasthebidirectionalprefrontalhippocampalcoupling