Cargando…

Interior Hotspot Engineering in Ag–Au Bimetallic Nanocomposites by In Situ Galvanic Replacement Reaction for Rapid and Sensitive Surface-Enhanced Raman Spectroscopy Detection

Engineering of interior hotspots provides a paradigm shift from traditional surface-enhanced Raman spectroscopy (SERS), in which the detection sensitivity depends on the positioning of adsorbed molecules. In the present work, we developed an Ag–Au bimetallic nanocomposite (SGBMNC) SERS platform with...

Descripción completa

Detalles Bibliográficos
Autores principales: Ansah, Iris Baffour, Lee, Soo Hyun, Mun, ChaeWon, Kim, Dong-Ho, Park, Sung-Gyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569599/
https://www.ncbi.nlm.nih.gov/pubmed/36233041
http://dx.doi.org/10.3390/ijms231911741
Descripción
Sumario:Engineering of interior hotspots provides a paradigm shift from traditional surface-enhanced Raman spectroscopy (SERS), in which the detection sensitivity depends on the positioning of adsorbed molecules. In the present work, we developed an Ag–Au bimetallic nanocomposite (SGBMNC) SERS platform with interior hotspots through facile chemical syntheses. Ag nanoparticles replaced by Au via the galvanic replacement reaction (GRR) provided hotspot regions inside the SGBMNC that remarkably enhanced the plasmonic activity compared to the conventional SERS platforms without the internal hotspots. The diffusion of analytes into the proposed interior hotspots during the GRR process enabled sensitive detections within 10 s. The SERS behaviors of the SGBMNC platform were investigated using methylene blue (MB) as a Raman probe dye. A quantitative study revealed excellent detection performance, with a limit of detection (LOD) of 42 pM for MB dye and a highly linear correlation between peak intensity and concentration (R(2) ≥ 0.91). The SGBMNC platform also enabled the detection of toxic benzyl butyl phthalate with a sufficient LOD of 0.09 ppb (i.e., 280 pM). Therefore, we believe that the proposed methodology can be used for SERS assays of hazardous materials in practical fields.