Cargando…

α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment

This review discusses a novel experimental approach for the regeneration of original tissue structure by recruitment of endogenous stem-cells to injured sites following administration of α-gal nanoparticles, which harness the natural anti-Gal antibody. Anti-Gal is produced in large amounts in all hu...

Descripción completa

Detalles Bibliográficos
Autores principales: Galili, Uri, Goldufsky, Josef W., Schaer, Gary L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569695/
https://www.ncbi.nlm.nih.gov/pubmed/36232789
http://dx.doi.org/10.3390/ijms231911490
Descripción
Sumario:This review discusses a novel experimental approach for the regeneration of original tissue structure by recruitment of endogenous stem-cells to injured sites following administration of α-gal nanoparticles, which harness the natural anti-Gal antibody. Anti-Gal is produced in large amounts in all humans, and it binds the multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) presented on α-gal nanoparticles. In situ binding of anti-Gal to α-gal nanoparticles activates the complement system and generates complement cleavage chemotactic-peptides that rapidly recruit macrophages. Macrophages reaching anti-Gal coated α-gal nanoparticles bind them via Fc/Fc receptor interaction and polarize into M2 pro-reparative macrophages. These macrophages secrete various cytokines that orchestrate regeneration of the injured tissue, including VEGF inducing neo-vascularization and cytokines directing homing of stem-cells to injury sites. Homing of stem-cells is also directed by interaction of complement cleavage peptides with their corresponding receptors on the stem-cells. Application of α-gal nanoparticles to skin wounds of anti-Gal producing mice results in decrease in healing time by half. Furthermore, α-gal nanoparticles treated wounds restore the normal structure of the injured skin without fibrosis or scar formation. Similarly, in a mouse model of occlusion/reperfusion myocardial-infarction, near complete regeneration after intramyocardial injection of α-gal nanoparticles was demonstrated, whereas hearts injected with saline display ~20% fibrosis and scar formation of the left ventricular wall. It is suggested that recruitment of stem-cells following anti-Gal/α-gal nanoparticles interaction in injured tissues may result in induction of localized regeneration facilitated by conducive microenvironments generated by pro-reparative macrophage secretions and “cues” provided by the extracellular matrix in the injury site.