Cargando…

α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment

This review discusses a novel experimental approach for the regeneration of original tissue structure by recruitment of endogenous stem-cells to injured sites following administration of α-gal nanoparticles, which harness the natural anti-Gal antibody. Anti-Gal is produced in large amounts in all hu...

Descripción completa

Detalles Bibliográficos
Autores principales: Galili, Uri, Goldufsky, Josef W., Schaer, Gary L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569695/
https://www.ncbi.nlm.nih.gov/pubmed/36232789
http://dx.doi.org/10.3390/ijms231911490
_version_ 1784809918519312384
author Galili, Uri
Goldufsky, Josef W.
Schaer, Gary L.
author_facet Galili, Uri
Goldufsky, Josef W.
Schaer, Gary L.
author_sort Galili, Uri
collection PubMed
description This review discusses a novel experimental approach for the regeneration of original tissue structure by recruitment of endogenous stem-cells to injured sites following administration of α-gal nanoparticles, which harness the natural anti-Gal antibody. Anti-Gal is produced in large amounts in all humans, and it binds the multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) presented on α-gal nanoparticles. In situ binding of anti-Gal to α-gal nanoparticles activates the complement system and generates complement cleavage chemotactic-peptides that rapidly recruit macrophages. Macrophages reaching anti-Gal coated α-gal nanoparticles bind them via Fc/Fc receptor interaction and polarize into M2 pro-reparative macrophages. These macrophages secrete various cytokines that orchestrate regeneration of the injured tissue, including VEGF inducing neo-vascularization and cytokines directing homing of stem-cells to injury sites. Homing of stem-cells is also directed by interaction of complement cleavage peptides with their corresponding receptors on the stem-cells. Application of α-gal nanoparticles to skin wounds of anti-Gal producing mice results in decrease in healing time by half. Furthermore, α-gal nanoparticles treated wounds restore the normal structure of the injured skin without fibrosis or scar formation. Similarly, in a mouse model of occlusion/reperfusion myocardial-infarction, near complete regeneration after intramyocardial injection of α-gal nanoparticles was demonstrated, whereas hearts injected with saline display ~20% fibrosis and scar formation of the left ventricular wall. It is suggested that recruitment of stem-cells following anti-Gal/α-gal nanoparticles interaction in injured tissues may result in induction of localized regeneration facilitated by conducive microenvironments generated by pro-reparative macrophage secretions and “cues” provided by the extracellular matrix in the injury site.
format Online
Article
Text
id pubmed-9569695
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95696952022-10-17 α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment Galili, Uri Goldufsky, Josef W. Schaer, Gary L. Int J Mol Sci Review This review discusses a novel experimental approach for the regeneration of original tissue structure by recruitment of endogenous stem-cells to injured sites following administration of α-gal nanoparticles, which harness the natural anti-Gal antibody. Anti-Gal is produced in large amounts in all humans, and it binds the multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) presented on α-gal nanoparticles. In situ binding of anti-Gal to α-gal nanoparticles activates the complement system and generates complement cleavage chemotactic-peptides that rapidly recruit macrophages. Macrophages reaching anti-Gal coated α-gal nanoparticles bind them via Fc/Fc receptor interaction and polarize into M2 pro-reparative macrophages. These macrophages secrete various cytokines that orchestrate regeneration of the injured tissue, including VEGF inducing neo-vascularization and cytokines directing homing of stem-cells to injury sites. Homing of stem-cells is also directed by interaction of complement cleavage peptides with their corresponding receptors on the stem-cells. Application of α-gal nanoparticles to skin wounds of anti-Gal producing mice results in decrease in healing time by half. Furthermore, α-gal nanoparticles treated wounds restore the normal structure of the injured skin without fibrosis or scar formation. Similarly, in a mouse model of occlusion/reperfusion myocardial-infarction, near complete regeneration after intramyocardial injection of α-gal nanoparticles was demonstrated, whereas hearts injected with saline display ~20% fibrosis and scar formation of the left ventricular wall. It is suggested that recruitment of stem-cells following anti-Gal/α-gal nanoparticles interaction in injured tissues may result in induction of localized regeneration facilitated by conducive microenvironments generated by pro-reparative macrophage secretions and “cues” provided by the extracellular matrix in the injury site. MDPI 2022-09-29 /pmc/articles/PMC9569695/ /pubmed/36232789 http://dx.doi.org/10.3390/ijms231911490 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Galili, Uri
Goldufsky, Josef W.
Schaer, Gary L.
α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment
title α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment
title_full α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment
title_fullStr α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment
title_full_unstemmed α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment
title_short α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment
title_sort α-gal nanoparticles mediated homing of endogenous stem cells for repair and regeneration of external and internal injuries by localized complement activation and macrophage recruitment
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569695/
https://www.ncbi.nlm.nih.gov/pubmed/36232789
http://dx.doi.org/10.3390/ijms231911490
work_keys_str_mv AT galiliuri agalnanoparticlesmediatedhomingofendogenousstemcellsforrepairandregenerationofexternalandinternalinjuriesbylocalizedcomplementactivationandmacrophagerecruitment
AT goldufskyjosefw agalnanoparticlesmediatedhomingofendogenousstemcellsforrepairandregenerationofexternalandinternalinjuriesbylocalizedcomplementactivationandmacrophagerecruitment
AT schaergaryl agalnanoparticlesmediatedhomingofendogenousstemcellsforrepairandregenerationofexternalandinternalinjuriesbylocalizedcomplementactivationandmacrophagerecruitment