Cargando…
The Medium Composition Impacts Staphylococcus aureus Biofilm Formation and Susceptibility to Antibiotics Applied in the Treatment of Bone Infections
The biofilm-associated infections of bones are life-threatening diseases, requiring application of dedicated antibiotics in order to counteract the tissue damage and spread of microorganisms. The in vitro analyses on biofilm formation and susceptibility to antibiotics are frequently carried out usin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569719/ https://www.ncbi.nlm.nih.gov/pubmed/36232864 http://dx.doi.org/10.3390/ijms231911564 |
Sumario: | The biofilm-associated infections of bones are life-threatening diseases, requiring application of dedicated antibiotics in order to counteract the tissue damage and spread of microorganisms. The in vitro analyses on biofilm formation and susceptibility to antibiotics are frequently carried out using methods that do not reflect conditions at the site of infection. To evaluate the influence of nutrient accessibility on Staphylococcus aureus biofilm development in vitro, a cohesive set of analyses in three different compositional media was performed. Next, the efficacy of four antibiotics used in bone infection treatment, including gentamycin, ciprofloxacin, levofloxacin, and vancomycin, against staphylococcal biofilm, was also assessed. The results show a significant reduction in the ability of biofilm to grow in a medium containing elements occurring in the serum, which also translated into the diversified changes in the efficacy of used antibiotics, compared to the setting in which conventional media were applied. The differences indicate the need for implementation of adequate in vitro models that closely mimic the infection site. The results of the present research may be considered an essential step toward the development of in vitro analyses aiming to accurately indicate the most suitable antibiotic to be applied against biofilm-related infections of bones. |
---|