Cargando…
Federated learning algorithms for generalized mixed-effects model (GLMM) on horizontally partitioned data from distributed sources
OBJECTIVES: This paper developed federated solutions based on two approximation algorithms to achieve federated generalized linear mixed effect models (GLMM). The paper also proposed a solution for numerical errors and singularity issues. And showed the two proposed methods can perform well in revea...
Autores principales: | Li, Wentao, Tong, Jiayi, Anjum, Md. Monowar, Mohammed, Noman, Chen, Yong, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9569919/ https://www.ncbi.nlm.nih.gov/pubmed/36244993 http://dx.doi.org/10.1186/s12911-022-02014-1 |
Ejemplares similares
-
Federated horizontally partitioned principal component analysis for biomedical applications
por: Hartebrodt, Anne, et al.
Publicado: (2022) -
Extension of Nakagawa & Schielzeth's
R(2)(GLMM) to random slopes models
por: Johnson, Paul CD
Publicado: (2014) -
CytoGLMM: conditional differential analysis for flow and mass cytometry experiments
por: Seiler, Christof, et al.
Publicado: (2021) -
Federated generalized linear mixed models for collaborative genome-wide association studies
por: Li, Wentao, et al.
Publicado: (2023) -
Magnitude of under-nutrition among under five children in Ethiopia based on 2019 Mini-Ethiopia Demographic and Health Survey: Generalized Linear Mixed Model (GLMM)
por: Raru, Temam Beshir, et al.
Publicado: (2022)