Cargando…
Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells
A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine CXCL12/...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570020/ https://www.ncbi.nlm.nih.gov/pubmed/36233192 http://dx.doi.org/10.3390/ijms231911887 |
_version_ | 1784810002474598400 |
---|---|
author | Neves, Maria Marolda, Viviana Mayor, Federico Penela, Petronila |
author_facet | Neves, Maria Marolda, Viviana Mayor, Federico Penela, Petronila |
author_sort | Neves, Maria |
collection | PubMed |
description | A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine CXCL12/CXCR4/ACKR3 and EGF receptor (EGFR) family signaling cascades. These cell lines display a high heterogeneity in expression profiles of CXCR4/ACKR3 chemokine receptors, with a predominant intracellular localization and different proportions of cell surface CXCR4+, ACKR3+ or double-positive cell subpopulations, and display an overall modest activation of oncogenic pathways in response to exogenous CXCL12 alone. Interestingly, we find that in MDA-MB-361 (luminal B subtype, Her2-overexpressing), but not in MCF7 (luminal A) or MDA-MB-231 (triple negative) cells, CXCR4/ACKR3 and EGFR receptor families share signaling components and crosstalk mechanisms to concurrently promote ERK1/2 activation, with a key involvement of the G protein-coupled receptor kinase 2 (GRK2) signaling hub and the cytosolic tyrosine kinase Src. Our findings suggest that in certain BC subtypes, a relevant cooperation between CXCR4/ACKR3 and growth factor receptors takes place to integrate concurrent signals emanating from the tumor microenvironment and foster cancer progression. |
format | Online Article Text |
id | pubmed-9570020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95700202022-10-17 Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells Neves, Maria Marolda, Viviana Mayor, Federico Penela, Petronila Int J Mol Sci Article A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine CXCL12/CXCR4/ACKR3 and EGF receptor (EGFR) family signaling cascades. These cell lines display a high heterogeneity in expression profiles of CXCR4/ACKR3 chemokine receptors, with a predominant intracellular localization and different proportions of cell surface CXCR4+, ACKR3+ or double-positive cell subpopulations, and display an overall modest activation of oncogenic pathways in response to exogenous CXCL12 alone. Interestingly, we find that in MDA-MB-361 (luminal B subtype, Her2-overexpressing), but not in MCF7 (luminal A) or MDA-MB-231 (triple negative) cells, CXCR4/ACKR3 and EGFR receptor families share signaling components and crosstalk mechanisms to concurrently promote ERK1/2 activation, with a key involvement of the G protein-coupled receptor kinase 2 (GRK2) signaling hub and the cytosolic tyrosine kinase Src. Our findings suggest that in certain BC subtypes, a relevant cooperation between CXCR4/ACKR3 and growth factor receptors takes place to integrate concurrent signals emanating from the tumor microenvironment and foster cancer progression. MDPI 2022-10-06 /pmc/articles/PMC9570020/ /pubmed/36233192 http://dx.doi.org/10.3390/ijms231911887 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Neves, Maria Marolda, Viviana Mayor, Federico Penela, Petronila Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells |
title | Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells |
title_full | Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells |
title_fullStr | Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells |
title_full_unstemmed | Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells |
title_short | Crosstalk between CXCR4/ACKR3 and EGFR Signaling in Breast Cancer Cells |
title_sort | crosstalk between cxcr4/ackr3 and egfr signaling in breast cancer cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570020/ https://www.ncbi.nlm.nih.gov/pubmed/36233192 http://dx.doi.org/10.3390/ijms231911887 |
work_keys_str_mv | AT nevesmaria crosstalkbetweencxcr4ackr3andegfrsignalinginbreastcancercells AT maroldaviviana crosstalkbetweencxcr4ackr3andegfrsignalinginbreastcancercells AT mayorfederico crosstalkbetweencxcr4ackr3andegfrsignalinginbreastcancercells AT penelapetronila crosstalkbetweencxcr4ackr3andegfrsignalinginbreastcancercells |