Cargando…

3β-Corner Stability by Comparative Molecular Dynamics Simulations

This study explored the mechanisms by which the stability of super-secondary structures of the 3β-corner type autonomously outside the protein globule are maintained in an aqueous environment. A molecular dynamic (MD) study determined the behavioral diversity of a large set of non-homologous 3β-corn...

Descripción completa

Detalles Bibliográficos
Autores principales: Rudnev, Vladimir R., Nikolsky, Kirill S., Petrovsky, Denis V., Kulikova, Liudmila I., Kargatov, Anton M., Malsagova, Kristina A., Stepanov, Alexander A., Kopylov, Arthur T., Kaysheva, Anna L., Efimov, Alexander V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570037/
https://www.ncbi.nlm.nih.gov/pubmed/36232976
http://dx.doi.org/10.3390/ijms231911674
Descripción
Sumario:This study explored the mechanisms by which the stability of super-secondary structures of the 3β-corner type autonomously outside the protein globule are maintained in an aqueous environment. A molecular dynamic (MD) study determined the behavioral diversity of a large set of non-homologous 3β-corner structures of various origins. We focused on geometric parameters such as change in gyration radius, solvent-accessible area, major conformer lifetime and torsion angles, and the number of hydrogen bonds. Ultimately, a set of 3β-corners from 330 structures was characterized by a root mean square deviation (RMSD) of less than 5 Å, a change in the gyration radius of no more than 5%, and the preservation of amino acid residues positioned within the allowed regions on the Ramachandran map. The studied structures retained their topologies throughout the MD experiments. Thus, the 3β-corner structure was found to be rather stable per se in a water environment, i.e., without the rest of a protein molecule, and can act as the nucleus or “ready-made” building block in protein folding. The 3β-corner can also be considered as an independent object for study in field of structural biology.