Cargando…
Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins
This work presents the first evidence that dissolved globular proteins change the arrangement of hydrogen bonds in water, with different proteins showing quantitatively different effects. Using ATR-FTIR (attenuated total reflection—Fourier transform infrared) spectroscopic analysis of OH-stretch ban...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570128/ https://www.ncbi.nlm.nih.gov/pubmed/36232682 http://dx.doi.org/10.3390/ijms231911381 |
_version_ | 1784810029450264576 |
---|---|
author | Titus, Amber R. Madeira, Pedro P. Ferreira, Luisa A. Belgovskiy, Alexander I. Mann, Elizabeth K. Mann, Jay Adin Meyer, William V. Smart, Anthony E. Uversky, Vladimir N. Zaslavsky, Boris Y. |
author_facet | Titus, Amber R. Madeira, Pedro P. Ferreira, Luisa A. Belgovskiy, Alexander I. Mann, Elizabeth K. Mann, Jay Adin Meyer, William V. Smart, Anthony E. Uversky, Vladimir N. Zaslavsky, Boris Y. |
author_sort | Titus, Amber R. |
collection | PubMed |
description | This work presents the first evidence that dissolved globular proteins change the arrangement of hydrogen bonds in water, with different proteins showing quantitatively different effects. Using ATR-FTIR (attenuated total reflection—Fourier transform infrared) spectroscopic analysis of OH-stretch bands, we obtain quantitative estimates of the relative amounts of the previously reported four subpopulations of water structures coexisting in a variety of aqueous solutions. Where solvatochromic dyes can measure the properties of solutions of non-ionic polymers, the results correlate well with ATR-FTIR measurements. In protein solutions to which solvatochromic dye probes cannot be applied, NMR (nuclear magnetic resonance) spectroscopy was used for the first time to estimate the hydrogen bond donor acidity of water. We found strong correlations between the solvent acidity and arrangement of hydrogen bonds in aqueous solutions for several globular proteins. Even quite similar proteins are found to change water properties in dramatically different ways. |
format | Online Article Text |
id | pubmed-9570128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95701282022-10-17 Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins Titus, Amber R. Madeira, Pedro P. Ferreira, Luisa A. Belgovskiy, Alexander I. Mann, Elizabeth K. Mann, Jay Adin Meyer, William V. Smart, Anthony E. Uversky, Vladimir N. Zaslavsky, Boris Y. Int J Mol Sci Article This work presents the first evidence that dissolved globular proteins change the arrangement of hydrogen bonds in water, with different proteins showing quantitatively different effects. Using ATR-FTIR (attenuated total reflection—Fourier transform infrared) spectroscopic analysis of OH-stretch bands, we obtain quantitative estimates of the relative amounts of the previously reported four subpopulations of water structures coexisting in a variety of aqueous solutions. Where solvatochromic dyes can measure the properties of solutions of non-ionic polymers, the results correlate well with ATR-FTIR measurements. In protein solutions to which solvatochromic dye probes cannot be applied, NMR (nuclear magnetic resonance) spectroscopy was used for the first time to estimate the hydrogen bond donor acidity of water. We found strong correlations between the solvent acidity and arrangement of hydrogen bonds in aqueous solutions for several globular proteins. Even quite similar proteins are found to change water properties in dramatically different ways. MDPI 2022-09-27 /pmc/articles/PMC9570128/ /pubmed/36232682 http://dx.doi.org/10.3390/ijms231911381 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Titus, Amber R. Madeira, Pedro P. Ferreira, Luisa A. Belgovskiy, Alexander I. Mann, Elizabeth K. Mann, Jay Adin Meyer, William V. Smart, Anthony E. Uversky, Vladimir N. Zaslavsky, Boris Y. Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins |
title | Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins |
title_full | Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins |
title_fullStr | Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins |
title_full_unstemmed | Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins |
title_short | Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins |
title_sort | arrangement of hydrogen bonds in aqueous solutions of different globular proteins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570128/ https://www.ncbi.nlm.nih.gov/pubmed/36232682 http://dx.doi.org/10.3390/ijms231911381 |
work_keys_str_mv | AT titusamberr arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT madeirapedrop arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT ferreiraluisaa arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT belgovskiyalexanderi arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT mannelizabethk arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT mannjayadin arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT meyerwilliamv arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT smartanthonye arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT uverskyvladimirn arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins AT zaslavskyborisy arrangementofhydrogenbondsinaqueoussolutionsofdifferentglobularproteins |