Cargando…

The Isolation and Preparation of Samwinol from Dracocephalum heterophyllum and Prevention on Aβ(25–35)-Induced Neuroinflammation in PC-12 Cells

Dracocephalum heterophyllum (D. heterophyllum) is a traditional Chinese Tibetan medicine that has been used for the treatment of lymphitis, hepatitis, and bronchitis. However, only a few selected chemical components are currently obtained from D. heterophyllum, which limits its further pharmacologic...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chengzhao, Dang, Jun, Lv, Yue, Fang, Yan, Ma, Chengjun, Wang, Qilan, Li, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570221/
https://www.ncbi.nlm.nih.gov/pubmed/36232874
http://dx.doi.org/10.3390/ijms231911572
Descripción
Sumario:Dracocephalum heterophyllum (D. heterophyllum) is a traditional Chinese Tibetan medicine that has been used for the treatment of lymphitis, hepatitis, and bronchitis. However, only a few selected chemical components are currently obtained from D. heterophyllum, which limits its further pharmacological applications. In this study, we have obtained samwinol from D. heterophyllum by medium- and high-pressure liquid chromatography separation for the first time. Thereafter, we investigated the protective actions of samwinol against amyloid beta protein fragment 25–35 (Aβ(25–35)) induced neurotoxicity in cultured rat pheochromocytoma PC-12 cells and explored its underlying mechanisms of action. The results indicated that samwinol could increase cell viability and inhibit the production of reactive oxygen species (ROS) and mitochondria-derived ROS, as assessed by MTT assay, Giemsa staining, and flow cytometry assay. Through Western blot analysis, it was found that samwinol substantially inhibited the phosphorylation of ERK(1/2) and promoted the expression of HO-1 and Nrf2. The data obtained from molecular docking were also consistent with the above conclusions. All of these results showed that samwinol from D. heterophyllum can display significant anti-neuroinflammatory and antioxidant activities in vitro, which are associated with the suppression of ERK/AKT phosphorylation and the activation of the Nrf2/HO-1 signaling pathway. In the future, additional in-depth mechanism studies will be carried out to provide more evidence for the potential of samwinol in the treatment of Alzheimer’s disease.