Cargando…
Deep Learning for Encrypted Traffic Classification and Unknown Data Detection
Despite the widespread use of encryption techniques to provide confidentiality over Internet communications, mobile device users are still susceptible to privacy and security risks. In this paper, a novel Deep Neural Network (DNN) based on a user activity detection framework is proposed to identify...
Autores principales: | Pathmaperuma, Madushi H., Rahulamathavan, Yogachandran, Dogan, Safak, Kondoz, Ahmet M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570541/ https://www.ncbi.nlm.nih.gov/pubmed/36236739 http://dx.doi.org/10.3390/s22197643 |
Ejemplares similares
-
A Survey: Security, Transparency, and Scalability Issues of NFT’s and Its Marketplaces
por: Bhujel, Sangam, et al.
Publicado: (2022) -
Deep Encrypted Traffic Detection: An Anomaly Detection Framework for Encryption Traffic Based on Parallel Automatic Feature Extraction
por: Long, Gang, et al.
Publicado: (2023) -
CBD: A Deep-Learning-Based Scheme for Encrypted Traffic Classification with a General Pre-Training Method
por: Hu, Xinyi, et al.
Publicado: (2021) -
Acceleration of Intrusion Detection in Encrypted Network Traffic Using Heterogeneous Hardware †
por: Papadogiannaki, Eva, et al.
Publicado: (2021) -
Detecting IoT User Behavior and Sensitive Information in Encrypted IoT-App Traffic
por: Subahi, Alanoud, et al.
Publicado: (2019)