Cargando…
Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty
Reinforcement learning (RL) trains an agent by maximizing the sum of a discounted reward. Since the discount factor has a critical effect on the learning performance of the RL agent, it is important to choose the discount factor properly. When uncertainties are involved in the training, the learning...
Autores principales: | Kim, MyeongSeop, Kim, Jung-Su, Choi, Myoung-Su, Park, Jae-Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570626/ https://www.ncbi.nlm.nih.gov/pubmed/36236366 http://dx.doi.org/10.3390/s22197266 |
Ejemplares similares
-
Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor–Critic with Hindsight Experience Replay
por: Prianto, Evan, et al.
Publicado: (2020) -
Adaptive reinforcement learning for task scheduling in aircraft maintenance
por: Silva, Catarina, et al.
Publicado: (2023) -
Speeding Task Allocation Search for Reconfigurations in Adaptive Distributed Embedded Systems Using Deep Reinforcement Learning
por: Rotaeche, Ramón, et al.
Publicado: (2023) -
Performance of Reinforced Concrete Beams Strengthened by Bidirectional Carbon-Fiber-Reinforced Polymers Based on Numerical Models
por: Moon, Jae Sang, et al.
Publicado: (2023) -
Reinforcement Learning with Side Information for the Uncertainties
por: Yang, Janghoon
Publicado: (2022)