Cargando…
Instance-Level Contrastive Learning for Weakly Supervised Object Detection
Weakly supervised object detection (WSOD) has received increasing attention in object detection field, because it only requires image-level annotations to indicate the presence or absence of target objects, which greatly reduces the labeling costs. Existing methods usually focus on the current indiv...
Autores principales: | Zhang, Ming, Zeng, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570746/ https://www.ncbi.nlm.nih.gov/pubmed/36236624 http://dx.doi.org/10.3390/s22197525 |
Ejemplares similares
-
WS-RCNN: Learning to Score Proposals for Weakly Supervised Instance Segmentation
por: Ou, Jia-Rong, et al.
Publicado: (2021) -
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning
por: Tan, Luxin, et al.
Publicado: (2023) -
Proposals Generation for Weakly Supervised Object Detection in Artwork Images
por: Milani, Federico, et al.
Publicado: (2022) -
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022)