Cargando…

Structural Analysis and Anti-Inflammatory Effect of a Digalactosyldiacylglycerol-Monoestolide, a Characteristic Glycolipid in Oats

Digalactosyldiacylglycerol- (DGDG-) monoestolide is a characteristic glycolipid in oats. DGDG-monoestolides possess a unique structure whereby a fatty acid of DGDG is replaced by a fatty acid ester of hydroxy fatty acid (FAHFA). While the physiological effects of DGDG and FAHFA have been reported pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamada, Hiroki, Ito, Junya, Shimizu, Naoki, Takahashi, Takumi, Kato, Chikara, Parida, Isabella Supardi, Jutanom, Mirinthorn, Ishihara, Katsuyuki, Nakagawa, Kiyotaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570764/
https://www.ncbi.nlm.nih.gov/pubmed/36235807
http://dx.doi.org/10.3390/nu14194153
Descripción
Sumario:Digalactosyldiacylglycerol- (DGDG-) monoestolide is a characteristic glycolipid in oats. DGDG-monoestolides possess a unique structure whereby a fatty acid of DGDG is replaced by a fatty acid ester of hydroxy fatty acid (FAHFA). While the physiological effects of DGDG and FAHFA have been reported previously, the effects of DGDG-monoestolides are unknown. Hence, we isolated a major DGDG-monoestolide molecular species from oats, analyzed its structure, and evaluated its anti-inflammatory effect. Based on GC-MS, MS/MS, and NMR analyses, the isolated compound was identified as a DGDG-monoestolide that contains the linoleic acid ester of 15-hydroxy linoleic acid (LAHLA) and linoleic acid (i.e., DGDG-LAHLA). The isolated DGDG-LAHLA was evaluated for its anti-inflammatory effect on LPS-stimulated RAW264 cells. The production of nitric oxide and cytokines (IL-6, TNF-α, and IL-10) were significantly decreased by DGDG-LAHLA, suggesting the anti-inflammatory effect of DGDG-LAHLA for the first time. In addition, our data showed a pronounced uptake of DGDG-LAHLA by cells. Some compounds corresponding to the predicted DGDG-LAHLA metabolites were also detected, suggesting that both intact DGDG-LAHLA and its metabolites may contribute to the above anti-inflammatory activities. These results are expected to expand the availability of oats as a functional food.