Cargando…
Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet++
Plant pests are the primary biological threats to agricultural and forestry production as well as forest ecosystem. Monitoring forest-pest damage via satellite images is crucial for the development of prevention and control strategies. Previous studies utilizing deep learning to monitor pest-infeste...
Autores principales: | Zhang, Jingzong, Cong, Shijie, Zhang, Gen, Ma, Yongjun, Zhang, Yi, Huang, Jianping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570766/ https://www.ncbi.nlm.nih.gov/pubmed/36236538 http://dx.doi.org/10.3390/s22197440 |
Ejemplares similares
-
Detection of Neolithic Settlements in Thessaly (Greece) Through Multispectral and Hyperspectral Satellite Imagery
por: Alexakis, Dimitrios, et al.
Publicado: (2009) -
Improved Agricultural Field Segmentation in Satellite Imagery Using TL-ResUNet Architecture
por: Safarov, Furkat, et al.
Publicado: (2022) -
Reclamation and Ecological Service Value Evaluation of Coastal Wetlands Using Multispectral Satellite Imagery
por: Yan, Jinfeng, et al.
Publicado: (2022) -
Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas
por: de Meester, Jasper, et al.
Publicado: (2020) -
Deep learning-based object recognition in multispectral satellite imagery for real-time applications
por: Gudžius, Povilas, et al.
Publicado: (2021)