Cargando…
A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology
Monitoring the status of culture fish is an essential task for precision aquaculture using a smart underwater imaging device as a non-intrusive way of sensing to monitor freely swimming fish even in turbid or low-ambient-light waters. This paper developed a two-mode underwater surveillance camera sy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570782/ https://www.ncbi.nlm.nih.gov/pubmed/36236700 http://dx.doi.org/10.3390/s22197603 |
_version_ | 1784810196494712832 |
---|---|
author | Chang, Chin-Chun Ubina, Naomi A. Cheng, Shyi-Chyi Lan, Hsun-Yu Chen, Kuan-Chu Huang, Chin-Chao |
author_facet | Chang, Chin-Chun Ubina, Naomi A. Cheng, Shyi-Chyi Lan, Hsun-Yu Chen, Kuan-Chu Huang, Chin-Chao |
author_sort | Chang, Chin-Chun |
collection | PubMed |
description | Monitoring the status of culture fish is an essential task for precision aquaculture using a smart underwater imaging device as a non-intrusive way of sensing to monitor freely swimming fish even in turbid or low-ambient-light waters. This paper developed a two-mode underwater surveillance camera system consisting of a sonar imaging device and a stereo camera. The sonar imaging device has two cloud-based Artificial Intelligence (AI) functions that estimate the quantity and the distribution of the length and weight of fish in a crowded fish school. Because sonar images can be noisy and fish instances of an overcrowded fish school are often overlapped, machine learning technologies, such as Mask R-CNN, Gaussian mixture models, convolutional neural networks, and semantic segmentation networks were employed to address the difficulty in the analysis of fish in sonar images. Furthermore, the sonar and stereo RGB images were aligned in the 3D space, offering an additional AI function for fish annotation based on RGB images. The proposed two-mode surveillance camera was tested to collect data from aquaculture tanks and off-shore net cages using a cloud-based AIoT system. The accuracy of the proposed AI functions based on human-annotated fish metric data sets were tested to verify the feasibility and suitability of the smart camera for the estimation of remote underwater fish metrics. |
format | Online Article Text |
id | pubmed-9570782 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95707822022-10-17 A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology Chang, Chin-Chun Ubina, Naomi A. Cheng, Shyi-Chyi Lan, Hsun-Yu Chen, Kuan-Chu Huang, Chin-Chao Sensors (Basel) Article Monitoring the status of culture fish is an essential task for precision aquaculture using a smart underwater imaging device as a non-intrusive way of sensing to monitor freely swimming fish even in turbid or low-ambient-light waters. This paper developed a two-mode underwater surveillance camera system consisting of a sonar imaging device and a stereo camera. The sonar imaging device has two cloud-based Artificial Intelligence (AI) functions that estimate the quantity and the distribution of the length and weight of fish in a crowded fish school. Because sonar images can be noisy and fish instances of an overcrowded fish school are often overlapped, machine learning technologies, such as Mask R-CNN, Gaussian mixture models, convolutional neural networks, and semantic segmentation networks were employed to address the difficulty in the analysis of fish in sonar images. Furthermore, the sonar and stereo RGB images were aligned in the 3D space, offering an additional AI function for fish annotation based on RGB images. The proposed two-mode surveillance camera was tested to collect data from aquaculture tanks and off-shore net cages using a cloud-based AIoT system. The accuracy of the proposed AI functions based on human-annotated fish metric data sets were tested to verify the feasibility and suitability of the smart camera for the estimation of remote underwater fish metrics. MDPI 2022-10-07 /pmc/articles/PMC9570782/ /pubmed/36236700 http://dx.doi.org/10.3390/s22197603 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chang, Chin-Chun Ubina, Naomi A. Cheng, Shyi-Chyi Lan, Hsun-Yu Chen, Kuan-Chu Huang, Chin-Chao A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology |
title | A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology |
title_full | A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology |
title_fullStr | A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology |
title_full_unstemmed | A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology |
title_short | A Two-Mode Underwater Smart Sensor Object for Precision Aquaculture Based on AIoT Technology |
title_sort | two-mode underwater smart sensor object for precision aquaculture based on aiot technology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570782/ https://www.ncbi.nlm.nih.gov/pubmed/36236700 http://dx.doi.org/10.3390/s22197603 |
work_keys_str_mv | AT changchinchun atwomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT ubinanaomia atwomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT chengshyichyi atwomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT lanhsunyu atwomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT chenkuanchu atwomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT huangchinchao atwomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT changchinchun twomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT ubinanaomia twomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT chengshyichyi twomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT lanhsunyu twomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT chenkuanchu twomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology AT huangchinchao twomodeunderwatersmartsensorobjectforprecisionaquaculturebasedonaiottechnology |