Cargando…
Utilization of a Novel Immunofluorescence Instrument Prototype for the Determination of the Herbicide Glyphosate
An enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the quantitative analytical determination of the herbicide active ingredient glyphosate in environmental matrices (surface water, soil, and plant tissues). Glyphosate, as a ubiquitous agricultural pollutant, is a xenobiot...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570942/ https://www.ncbi.nlm.nih.gov/pubmed/36235051 http://dx.doi.org/10.3390/molecules27196514 |
Sumario: | An enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the quantitative analytical determination of the herbicide active ingredient glyphosate in environmental matrices (surface water, soil, and plant tissues). Glyphosate, as a ubiquitous agricultural pollutant, is a xenobiotic substance with exposure in aquatic and terrestrial ecosystems due its extremely high worldwide application rate. The immunoassay developed in Project Aquafluosense is part of a fluorescence-based instrumentation setup for the in situ determination of several characteristic water quality parameters. The 96-well microplate-based competitive immunoassay method applies fluorescence signal detection in the concentration range of 0–100 ng/mL glyphosate. Application of the fluorescent signal provides a limit of detection of 0.09 ng/mL, which is 2.5-fold lower than that obtained with a visual absorbance signal. Beside the improved limit of detection, determination by fluorescence provided a wider and steeper dynamic range for glyphosate detection. No matrix effect appeared for the undiluted surface water samples, while plant tissues and soil samples required dilution rates of 1:10 and 1:100, respectively. No cross-reaction was determined with the main metabolite of glyphosate, N-aminomethylphosphonic acid, and related compounds. |
---|