Cargando…
Hint-Based Image Colorization Based on Hierarchical Vision Transformer
Hint-based image colorization is an image-to-image translation task that aims at creating a full-color image from an input luminance image when a small set of color values for some pixels are given as hints. Though traditional deep-learning-based methods have been proposed in the literature, they ar...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570951/ https://www.ncbi.nlm.nih.gov/pubmed/36236517 http://dx.doi.org/10.3390/s22197419 |
Sumario: | Hint-based image colorization is an image-to-image translation task that aims at creating a full-color image from an input luminance image when a small set of color values for some pixels are given as hints. Though traditional deep-learning-based methods have been proposed in the literature, they are based on convolution neural networks (CNNs) that have strong spatial locality due to the convolution operations. This often causes non-trivial visual artifacts in the colorization results, such as false color and color bleeding artifacts. To overcome this limitation, this study proposes a vision transformer-based colorization network. The proposed hint-based colorization network has a hierarchical vision transformer architecture in the form of an encoder-decoder structure based on transformer blocks. As the proposed method uses the transformer blocks that can learn rich long-range dependency, it can achieve visually plausible colorization results, even with a small number of color hints. Through the verification experiments, the results reveal that the proposed transformer model outperforms the conventional CNN-based models. In addition, we qualitatively analyze the effect of the long-range dependency of the transformer model on hint-based image colorization. |
---|