Cargando…
A Residual-Inception U-Net (RIU-Net) Approach and Comparisons with U-Shaped CNN and Transformer Models for Building Segmentation from High-Resolution Satellite Images
Building segmentation is crucial for applications extending from map production to urban planning. Nowadays, it is still a challenge due to CNNs’ inability to model global context and Transformers’ high memory need. In this study, 10 CNN and Transformer models were generated, and comparisons were re...
Autores principales: | Sariturk, Batuhan, Seker, Dursun Zafer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570988/ https://www.ncbi.nlm.nih.gov/pubmed/36236721 http://dx.doi.org/10.3390/s22197624 |
Ejemplares similares
-
New MS lesion segmentation with deep residual attention gate U-Net utilizing 2D slices of 3D MR images
por: Sarica, Beytullah, et al.
Publicado: (2022) -
Detecting Buildings and Nonbuildings from Satellite Images Using U-Net
por: Alsabhan, Waleed, et al.
Publicado: (2022) -
Contrast-enhanced magnetic resonance image segmentation based on improved U-Net and Inception-ResNet in the diagnosis of spinal metastases
por: Wang, Hai, et al.
Publicado: (2023) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image
por: Wang, Jinke, et al.
Publicado: (2021)