Cargando…

Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications

In this paper, a multiple-input–multiple-output (MIMO) antenna is reported for 5G frequency range-2 (FR-2), 28 GHz bands. The MIMO antenna is developed in multiple iterations, including single-element design, cross-polarization reduction, and mutual coupling reduction. Initially, a single-element co...

Descripción completa

Detalles Bibliográficos
Autores principales: Ravi, Kiran Chand, Kumar, Jayendra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571068/
https://www.ncbi.nlm.nih.gov/pubmed/36236391
http://dx.doi.org/10.3390/s22197283
Descripción
Sumario:In this paper, a multiple-input–multiple-output (MIMO) antenna is reported for 5G frequency range-2 (FR-2), 28 GHz bands. The MIMO antenna is developed in multiple iterations, including single-element design, cross-polarization reduction, and mutual coupling reduction. Initially, a single-element coplanar edge feed rectangular patch antenna is designed and the E-plane cross-polarization is reduced by −13 dB by trimming the forward corners of the patch. The ground plane is truncated to improve the −3 dB half-power-beamwidth (HPBW). A multi-wavelength spiral inspired parasitic surrounding the single element antenna is loaded, and performance analysis is performed. This parasitic element is used for self-field cancelation for the MIMO configuration. Two MIMO configurations, one with linear and the second with inverted elements, are developed and investigated. The first configuration is found to have better isolation of less than −25 dB compared to the −20 dB of the second configuration. Similarly, the gain of 4.8 dBi, the bandwidth of 3 GHz, envelope correlation coefficient (ECC) of 0.01, and diversity gain (DG) of 9.99 dB are superior to the second configuration. To validate the work, one of two MIMO configurations is fabricated and good agreement is found between simulation and measurement results.