Cargando…
Seawater Splitting for Hydrogen Generation Using Zirconium and Its Niobium Alloy under Gamma Radiation
Hydrogen production is produced for future green energy. The radiation–chemical yield for seawater without a catalyst, with Zr, and with Zr1%Nb (Zr = 99% Nb = 1%) were (G(H(2)) = 0.81, 307.1, and 437.4 molecules/100 eV, respectively. The radiation–thermal water decomposition increased in γ-radiation...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571122/ https://www.ncbi.nlm.nih.gov/pubmed/36234862 http://dx.doi.org/10.3390/molecules27196325 |
Sumario: | Hydrogen production is produced for future green energy. The radiation–chemical yield for seawater without a catalyst, with Zr, and with Zr1%Nb (Zr = 99% Nb = 1%) were (G(H(2)) = 0.81, 307.1, and 437.4 molecules/100 eV, respectively. The radiation–thermal water decomposition increased in γ-radiation of the Zr1%Nb + SW system with increasing temperature. At T = 1273 K, it prevails over radiation processes. During the radiation and heat radiation heterogeneous procedures in the Zr1% Nb + SW system, the production of surface energetic sites and secondary electrons accelerated the accumulation of molecular hydrogen and Zr1%Nb oxidation. Thermal radiation and thermal processes caused the metal phase to collect thermal surface energetic sites for water breakdown and Zr 1%Nb oxidation starting at T = 573 K. |
---|