Cargando…

Anomalous Network Traffic Detection Method Based on an Elevated Harris Hawks Optimization Method and Gated Recurrent Unit Classifier

In recent years, network traffic contains a lot of feature information. If there are too many redundant features, the computational cost of the algorithm will be greatly increased. This paper proposes an anomalous network traffic detection method based on Elevated Harris Hawks optimization. This met...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Yao, Kang, Chunying, Yu, Hongchen, Fan, Tao, Zhang, Haofang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571187/
https://www.ncbi.nlm.nih.gov/pubmed/36236647
http://dx.doi.org/10.3390/s22197548
Descripción
Sumario:In recent years, network traffic contains a lot of feature information. If there are too many redundant features, the computational cost of the algorithm will be greatly increased. This paper proposes an anomalous network traffic detection method based on Elevated Harris Hawks optimization. This method is easier to identify redundant features in anomalous network traffic, reduces computational overhead, and improves the performance of anomalous traffic detection methods. By enhancing the random jump distance function, escape energy function, and designing a unique fitness function, there is a unique anomalous traffic detection method built using the algorithm and the neural network for anomalous traffic detection. This method is tested on three public network traffic datasets, namely the UNSW-NB15, NSL-KDD, and CICIDS2018. The experimental results show that the proposed method does not only significantly reduce the number of features in the dataset and computational overhead, but also gives better indicators for every test.