Cargando…

Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia

Alpine plants are exposed to demanding environmental conditions, such as high ultraviolet (UV) and photosynthetic radiation, extreme temperatures, drought, and nutrient deficiencies. Alpine plants adapt and acclimate to harsh conditions, developing several strategies, including biochemical, physiolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Trošt Sedej, Tadeja, Turk, Tajda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571203/
https://www.ncbi.nlm.nih.gov/pubmed/36235393
http://dx.doi.org/10.3390/plants11192527
_version_ 1784810306321514496
author Trošt Sedej, Tadeja
Turk, Tajda
author_facet Trošt Sedej, Tadeja
Turk, Tajda
author_sort Trošt Sedej, Tadeja
collection PubMed
description Alpine plants are exposed to demanding environmental conditions, such as high ultraviolet (UV) and photosynthetic radiation, extreme temperatures, drought, and nutrient deficiencies. Alpine plants adapt and acclimate to harsh conditions, developing several strategies, including biochemical, physiological, and optical responses. However, alpine plants’ survival strategies are hardly researched due to time-consuming and complex experimental conditions, which are supported by scarce studies. Our study focused on the functional traits of the alpine plant Alchemilla monticola Opiz (hairy lady’s mantle) growing at two different altitudes (1500, 2000 m a.s.l.) and two different UV exposures per altitude. Near-ambient (UV) and reduced (UV-) UV radiations were provided by using two sorts of UV absorbing filters; temperatures were monitored hourly. The experimental plots were located at Tegoška Gora, Karavanke, Slovenia. Functional traits: physiological, biochemical, and optical characteristics were recorded three times during the growing season. A. monticola showed high maximum photochemical efficiency at both altitudes throughout the season, which confirms good adaptation and acclimatization of the plant. Furthermore, significantly higher maximum photochemical efficiency at the subalpine altitude coincided with significantly higher UV absorbing compounds (UV AC) contents at the subalpine compared to the montane altitude in August. A. monticola manifested high UV AC contents throughout the season, with significantly increased synthesis of UV AC contents in the subalpine conditions in August and September. The stomatal conductance rate increased with altitude and was correlated mostly to a lower temperature. A. monticola leaves did not transmit any UV spectrum, which corresponded to high total UV AC contents. The leaf transmittance of the photosynthetic spectrum increased at the subalpine altitude, while the transmittance of the green and yellow spectra increased under the reduced UV radiation in the autumn. A. monticola’s high photosynthetic spectrum transmittance at the subalpine altitude in the autumn might therefore be due to subalpine harsh environmental conditions, as well as plant ontogenetical phase.
format Online
Article
Text
id pubmed-9571203
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95712032022-10-17 Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia Trošt Sedej, Tadeja Turk, Tajda Plants (Basel) Article Alpine plants are exposed to demanding environmental conditions, such as high ultraviolet (UV) and photosynthetic radiation, extreme temperatures, drought, and nutrient deficiencies. Alpine plants adapt and acclimate to harsh conditions, developing several strategies, including biochemical, physiological, and optical responses. However, alpine plants’ survival strategies are hardly researched due to time-consuming and complex experimental conditions, which are supported by scarce studies. Our study focused on the functional traits of the alpine plant Alchemilla monticola Opiz (hairy lady’s mantle) growing at two different altitudes (1500, 2000 m a.s.l.) and two different UV exposures per altitude. Near-ambient (UV) and reduced (UV-) UV radiations were provided by using two sorts of UV absorbing filters; temperatures were monitored hourly. The experimental plots were located at Tegoška Gora, Karavanke, Slovenia. Functional traits: physiological, biochemical, and optical characteristics were recorded three times during the growing season. A. monticola showed high maximum photochemical efficiency at both altitudes throughout the season, which confirms good adaptation and acclimatization of the plant. Furthermore, significantly higher maximum photochemical efficiency at the subalpine altitude coincided with significantly higher UV absorbing compounds (UV AC) contents at the subalpine compared to the montane altitude in August. A. monticola manifested high UV AC contents throughout the season, with significantly increased synthesis of UV AC contents in the subalpine conditions in August and September. The stomatal conductance rate increased with altitude and was correlated mostly to a lower temperature. A. monticola leaves did not transmit any UV spectrum, which corresponded to high total UV AC contents. The leaf transmittance of the photosynthetic spectrum increased at the subalpine altitude, while the transmittance of the green and yellow spectra increased under the reduced UV radiation in the autumn. A. monticola’s high photosynthetic spectrum transmittance at the subalpine altitude in the autumn might therefore be due to subalpine harsh environmental conditions, as well as plant ontogenetical phase. MDPI 2022-09-27 /pmc/articles/PMC9571203/ /pubmed/36235393 http://dx.doi.org/10.3390/plants11192527 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Trošt Sedej, Tadeja
Turk, Tajda
Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia
title Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia
title_full Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia
title_fullStr Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia
title_full_unstemmed Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia
title_short Alchemilla monticola Opiz. Functional Traits Respond to Diverse Alpine Environmental Conditions in Karavanke, Slovenia
title_sort alchemilla monticola opiz. functional traits respond to diverse alpine environmental conditions in karavanke, slovenia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571203/
https://www.ncbi.nlm.nih.gov/pubmed/36235393
http://dx.doi.org/10.3390/plants11192527
work_keys_str_mv AT trostsedejtadeja alchemillamonticolaopizfunctionaltraitsrespondtodiversealpineenvironmentalconditionsinkaravankeslovenia
AT turktajda alchemillamonticolaopizfunctionaltraitsrespondtodiversealpineenvironmentalconditionsinkaravankeslovenia