Cargando…
Adaptable and Robust EEG Bad Channel Detection Using Local Outlier Factor (LOF)
Electroencephalogram (EEG) data are typically affected by artifacts. The detection and removal of bad channels (i.e., with poor signal-to-noise ratio) is a crucial initial step. EEG data acquired from different populations require different cleaning strategies due to the inherent differences in the...
Autores principales: | Kumaravel, Velu Prabhakar, Buiatti, Marco, Parise, Eugenio, Farella, Elisabetta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571252/ https://www.ncbi.nlm.nih.gov/pubmed/36236413 http://dx.doi.org/10.3390/s22197314 |
Ejemplares similares
-
NEAR: An artifact removal pipeline for human newborn EEG data
por: Kumaravel, Velu Prabhakar, et al.
Publicado: (2022) -
Efficient Low-Frequency SSVEP Detection with Wearable EEG Using Normalized Canonical Correlation Analysis
por: Kartsch, Victor Javier, et al.
Publicado: (2022) -
Outliers in Covid 19 data based on Rule representation - the analysis of LOF algorithm
por: Brzezińska, Agnieszka Nowak, et al.
Publicado: (2021) -
Lof der verpleegkunst
por: Adriaansen, Marian
Publicado: (2020) -
Robust Outlier-Adaptive Filtering for Vision-Aided Inertial Navigation
por: Lee, Kyuman, et al.
Publicado: (2020)