Cargando…

Pandanus amaryllifolius Exhibits In Vitro Anti-Amyloidogenic Activity and Promotes Neuroprotective Effects in Amyloid-β-Induced SH-SY5Y Cells

Accumulation of amyloid-beta (Aβ) plaques leading to oxidative stress, mitochondrial damage, and cell death is one of the most accepted pathological hallmarks of Alzheimer’s disease (AD). Pandanus amaryllifolius, commonly recognized as fragrant screw pine due to its characteristic smell, is widely d...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Mario A., Ishikawa, Hayato, An, Seong Soo A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571295/
https://www.ncbi.nlm.nih.gov/pubmed/36235616
http://dx.doi.org/10.3390/nu14193962
Descripción
Sumario:Accumulation of amyloid-beta (Aβ) plaques leading to oxidative stress, mitochondrial damage, and cell death is one of the most accepted pathological hallmarks of Alzheimer’s disease (AD). Pandanus amaryllifolius, commonly recognized as fragrant screw pine due to its characteristic smell, is widely distributed in Southeast Asia and is consumed as a food flavor. In search for potential anti-AD agents from terrestrial sources, P. amaryllifolius was explored for its in vitro anti-amyloidogenic and neuroprotective effects. Thioflavin T (ThT) assay and the high-throughput screening multimer detection system (MDS-HTS) assay were used to evaluate the extracts’ potential to inhibit Aβ aggregations and oligomerizations, respectively. The crude alcoholic extract (CAE, 50 μg/mL) and crude base extract (CBE, 50 μg/mL) obstructed the Aβ aggregation. Interestingly, results revealed that only CBE inhibited the Aβ nucleation at 100 μg/mL. Both CAE and CBE also restored the cell viability, reduced the level of reactive oxygen species, and reversed the mitochondrial dysfunctions at 10 and 20 μg/mL extract concentrations in Aβ-insulted SY-SY5Y cells. In addition, the unprecedented isolation of nicotinamide from P. amaryllifolius CBE is a remarkable discovery as one of its potential bioactive constituents against AD. Hence, our results provided new insights into the promising potential of P. amaryllifolius extracts against AD and further exploration of other prospective bioactive constituents.