Cargando…

Fabrication of Polysaccharide-Based Halochromic Nanofibers via Needle-Less Electrospinning and Their Characterization: A Study of the Leaching Effect

Responsive materials, i.e., smart materials, have the ability to change their physical or chemical properties upon certain external signals. The development of nanofibrous halochromic materials, specifically combining the pH-sensitive functionality and unique nanofiber properties, could yield intere...

Descripción completa

Detalles Bibliográficos
Autores principales: Elveren, Beste, Hribernik, Silvo, Kurečič, Manja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571342/
https://www.ncbi.nlm.nih.gov/pubmed/36236187
http://dx.doi.org/10.3390/polym14194239
Descripción
Sumario:Responsive materials, i.e., smart materials, have the ability to change their physical or chemical properties upon certain external signals. The development of nanofibrous halochromic materials, specifically combining the pH-sensitive functionality and unique nanofiber properties, could yield interesting new applications, especially when the common problem of dye leaching is successfully tackled. Therefore, in this article, we studied the fabrication process of polysaccharide-based halochromic nanofibrous materials by using a combination of various halochromic dyes (bromothymol blue, bromocresol green, and thymol blue) and cellulose acetate in a spinning solution using a one-pot strategy. The inhibition of leaching was addressed by using a complexing agent: poly-diallyl-dimethylammonium chloride (PDADMAC). The preparation of hybrid spinning solutions, their characterization, and ability to form continuous nanofibers were studied using a high production needle-less electrospinning system. The produced hybrid solutions and nanofibers were characterized, in terms of their rheological properties, chemical structure, morphology, and functionality. Fabricated nanofibrous halochromic structures show a clear color change upon exposure to different pH values, as well as the reduced leaching of dyes, upon the addition of a complexing agent. The leaching decreased by 61% in the case of bromocresol green, while, in the case of bromothymol blue and thymol blue, the leaching was reduced by 95 and 99%, respectively.