Cargando…
FedMSA: A Model Selection and Adaptation System for Federated Learning
Federated Learning (FL) enables multiple clients to train a shared model collaboratively without sharing any personal data. However, selecting a model and adapting it quickly to meet user expectations in a large-scale FL application with heterogeneous devices is challenging. In this paper, we propos...
Autores principales: | Sun, Rui, Li, Yinhao, Shah, Tejal, Sham, Ringo W. H., Szydlo, Tomasz, Qian, Bin, Thakker, Dhaval, Ranjan, Rajiv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571508/ https://www.ncbi.nlm.nih.gov/pubmed/36236343 http://dx.doi.org/10.3390/s22197244 |
Ejemplares similares
-
Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware IoT Devices Using Reinforcement Learning
por: Habeeb, Fawzy, et al.
Publicado: (2022) -
Genetic Diversity of Babesia bovis MSA-1, MSA-2b and MSA-2c in China
por: Wang, Jinming, et al.
Publicado: (2020) -
A comparison of MSA tools
por: Essoussi, Nadia, et al.
Publicado: (2008) -
FedADT: An Adaptive Method Based on Derivative Term for Federated Learning
por: Gao, Huimin, et al.
Publicado: (2023) -
FedRAD: Heterogeneous Federated Learning via Relational Adaptive Distillation
por: Tang, Jianwu, et al.
Publicado: (2023)