Cargando…
Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent
The discharge of large amounts of effluents contaminated with gentian violet (GV) and phenol red (PR) threatens aquatic flora and fauna as well as human health, which is why these effluents must be treated before being discarded. This study seeks the removal of dyes, using water lily (Eichhornia cra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571632/ https://www.ncbi.nlm.nih.gov/pubmed/36234979 http://dx.doi.org/10.3390/molecules27196442 |
_version_ | 1784810410848813056 |
---|---|
author | López-Ahumada, Eunice Salazar-Hernández, Mercedes Talavera-López, Alfonso Solis-Marcial, O. J. Hernández-Soto, Rosa Ruelas-Leyva, Jose P. Hernández, José Alfredo |
author_facet | López-Ahumada, Eunice Salazar-Hernández, Mercedes Talavera-López, Alfonso Solis-Marcial, O. J. Hernández-Soto, Rosa Ruelas-Leyva, Jose P. Hernández, José Alfredo |
author_sort | López-Ahumada, Eunice |
collection | PubMed |
description | The discharge of large amounts of effluents contaminated with gentian violet (GV) and phenol red (PR) threatens aquatic flora and fauna as well as human health, which is why these effluents must be treated before being discarded. This study seeks the removal of dyes, using water lily (Eichhornia crassipes) as an adsorbent with different pretreatments. PR and GV were analyzed by a UV-visible spectrophotometer. Equilibrium experimental data showed that Freundlich is the best model to fit PR and SIPS for GV, showing that the adsorption process for both dyes was heterogeneous, favorable, chemical (for GV), and physical (for PR). The thermodynamic analysis for the adsorption process of both dyes depends directly on the increase in temperature and is carried out spontaneously. The Pseudo first Order (PFO) kinetic model for GV and PR is the best fit for the dyes having an adsorption capacity of 91 and 198 mg/g, respectively. The characterization of the materials demonstrated significant changes in the bands of lignin, cellulose, and hemicellulose, which indicates that the functional groups could participate in the capture of the dyes together with the electrostatic forces of the medium, from which it be concluded that the adsorption process is carried out by several mechanisms. |
format | Online Article Text |
id | pubmed-9571632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95716322022-10-17 Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent López-Ahumada, Eunice Salazar-Hernández, Mercedes Talavera-López, Alfonso Solis-Marcial, O. J. Hernández-Soto, Rosa Ruelas-Leyva, Jose P. Hernández, José Alfredo Molecules Article The discharge of large amounts of effluents contaminated with gentian violet (GV) and phenol red (PR) threatens aquatic flora and fauna as well as human health, which is why these effluents must be treated before being discarded. This study seeks the removal of dyes, using water lily (Eichhornia crassipes) as an adsorbent with different pretreatments. PR and GV were analyzed by a UV-visible spectrophotometer. Equilibrium experimental data showed that Freundlich is the best model to fit PR and SIPS for GV, showing that the adsorption process for both dyes was heterogeneous, favorable, chemical (for GV), and physical (for PR). The thermodynamic analysis for the adsorption process of both dyes depends directly on the increase in temperature and is carried out spontaneously. The Pseudo first Order (PFO) kinetic model for GV and PR is the best fit for the dyes having an adsorption capacity of 91 and 198 mg/g, respectively. The characterization of the materials demonstrated significant changes in the bands of lignin, cellulose, and hemicellulose, which indicates that the functional groups could participate in the capture of the dyes together with the electrostatic forces of the medium, from which it be concluded that the adsorption process is carried out by several mechanisms. MDPI 2022-09-29 /pmc/articles/PMC9571632/ /pubmed/36234979 http://dx.doi.org/10.3390/molecules27196442 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article López-Ahumada, Eunice Salazar-Hernández, Mercedes Talavera-López, Alfonso Solis-Marcial, O. J. Hernández-Soto, Rosa Ruelas-Leyva, Jose P. Hernández, José Alfredo Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent |
title | Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent |
title_full | Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent |
title_fullStr | Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent |
title_full_unstemmed | Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent |
title_short | Removal of Anionic and Cationic Dyes Present in Solution Using Biomass of Eichhornia crassipes as Bioadsorbent |
title_sort | removal of anionic and cationic dyes present in solution using biomass of eichhornia crassipes as bioadsorbent |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571632/ https://www.ncbi.nlm.nih.gov/pubmed/36234979 http://dx.doi.org/10.3390/molecules27196442 |
work_keys_str_mv | AT lopezahumadaeunice removalofanionicandcationicdyespresentinsolutionusingbiomassofeichhorniacrassipesasbioadsorbent AT salazarhernandezmercedes removalofanionicandcationicdyespresentinsolutionusingbiomassofeichhorniacrassipesasbioadsorbent AT talaveralopezalfonso removalofanionicandcationicdyespresentinsolutionusingbiomassofeichhorniacrassipesasbioadsorbent AT solismarcialoj removalofanionicandcationicdyespresentinsolutionusingbiomassofeichhorniacrassipesasbioadsorbent AT hernandezsotorosa removalofanionicandcationicdyespresentinsolutionusingbiomassofeichhorniacrassipesasbioadsorbent AT ruelasleyvajosep removalofanionicandcationicdyespresentinsolutionusingbiomassofeichhorniacrassipesasbioadsorbent AT hernandezjosealfredo removalofanionicandcationicdyespresentinsolutionusingbiomassofeichhorniacrassipesasbioadsorbent |