Cargando…

Synthesis of a Novel Hyperbranched Polyimide for Reinforcing Toughness and Insulating Properties of Bismaleimide Resin

Bismaleimide (BMI) resin has great potential in aerospace, electronic, and machinery fields due to its extraordinary thermal stability. Owing to BMI’s lower impact strength, various modified BMI resins have been prepared using CTBN, PEEK, fillers, and hyperbranched polymer to achieve higher impact s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Lida, Yu, Yang, Shi, Jiahao, Zhang, Xiaorui, Gao, Feng, Li, Chenhao, Yang, Zhou, Zhao, Jingui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571665/
https://www.ncbi.nlm.nih.gov/pubmed/36236181
http://dx.doi.org/10.3390/polym14194234
Descripción
Sumario:Bismaleimide (BMI) resin has great potential in aerospace, electronic, and machinery fields due to its extraordinary thermal stability. Owing to BMI’s lower impact strength, various modified BMI resins have been prepared using CTBN, PEEK, fillers, and hyperbranched polymer to achieve higher impact strength. However, enhancement of toughness causes deterioration of other performance, such as Tg, thermal stability, and brittleness. In this work, BMI resin modified by hyperbranched polyimide (HBPI) was obtained. HBPI designed with flexible segments, unsaturated bonds, and a low degree of branching was synthesized. FT-IR and (13)C-NMR were applied to confirm the successful fabrication of HBPI. The mechanical strength and dielectric properties of cured BMI resin containing various levels of HBPI were analyzed systematically. The impact and bending strength were improved significantly with increased HBPI content. When the content of HBPI is 40 wt.%, the impact strength and bending strength reach the maximum value of 32 kJ/mm and 88 MPa. In addition, the BMI cured with HBPI exhibits enhanced bending modulus to the value of 5.9 GPa. Furthermore, the dielectric strength of cured resin was improved to 28.3 kV/mm. The improved mechanical strength and enhanced dielectric properties are attributed to the increasing free volume induced by HBPI. These results indicate the promise of BMI resin modified by HBPI applied in insulating coatings and low dielectric laminates used in high frequency.