Cargando…
EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning
There is high demand for techniques to estimate human mental workload during some activities for productivity enhancement or accident prevention. Most studies focus on a single physiological sensing modality and use univariate methods to analyse multi-channel electroencephalography (EEG) data. This...
Autores principales: | Cao, Jun, Garro, Enara Martin, Zhao, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571712/ https://www.ncbi.nlm.nih.gov/pubmed/36236725 http://dx.doi.org/10.3390/s22197623 |
Ejemplares similares
-
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
Multisubject “Learning” for Mental Workload Classification Using Concurrent EEG, fNIRS, and Physiological Measures
por: Liu, Yichuan, et al.
Publicado: (2017) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study
por: Zhang, Yujin, et al.
Publicado: (2020)