Cargando…
Multi-Modal Deep Learning for Assessing Surgeon Technical Skill
This paper introduces a new dataset of a surgical knot-tying task, and a multi-modal deep learning model that achieves comparable performance to expert human raters on this skill assessment task. Seventy-two surgical trainees and faculty were recruited for the knot-tying task, and were recorded usin...
Autores principales: | Kasa, Kevin, Burns, David, Goldenberg, Mitchell G., Selim, Omar, Whyne, Cari, Hardisty, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571767/ https://www.ncbi.nlm.nih.gov/pubmed/36236424 http://dx.doi.org/10.3390/s22197328 |
Ejemplares similares
-
Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning
por: Arrowsmith, Colin, et al.
Publicado: (2022) -
Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation
por: Alfakir, Abdalrahman, et al.
Publicado: (2022) -
Personalized Activity Recognition with Deep Triplet Embeddings
por: Burns, David, et al.
Publicado: (2022) -
Evaluation of at-home physiotherapy: machine-learning prediction with smart watch inertial sensors
por: Boyer, Philip, et al.
Publicado: (2023) -
Adherence Tracking With Smart Watches for Shoulder Physiotherapy in Rotator Cuff Pathology: Protocol for a Longitudinal Cohort Study
por: Burns, David, et al.
Publicado: (2020)