Cargando…

Hierarchically Annular Mesoporous Carbon Derived from Phenolic Resin for Efficient Removal of Antibiotics in Wastewater

Antibiotics have become a new type of environmental pollutant due to their extensive use. High-performance adsorbents are of paramount significance for a cost-effective and environmentally friendly strategy to remove antibiotics from water environments. Herein, we report a novel annular mesoporous c...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Xuexia, Su, Mengxing, Fang, Feixiang, Hong, Jiafu, Zhang, Yumeng, Zhou, Shu-Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571829/
https://www.ncbi.nlm.nih.gov/pubmed/36235269
http://dx.doi.org/10.3390/molecules27196735
Descripción
Sumario:Antibiotics have become a new type of environmental pollutant due to their extensive use. High-performance adsorbents are of paramount significance for a cost-effective and environmentally friendly strategy to remove antibiotics from water environments. Herein, we report a novel annular mesoporous carbon (MCN), prepared by phenolic resin and triblock copolymer F127, as a high-performance adsorbent to remove penicillin, streptomycin, and tetracycline hydrochloride from wastewater. The MCNs have high purity, rich annular mesoporosity, a high surface area (605.53 m(2)/g), and large pore volume (0.58 cm(3)/g), improving the adsorption capacity and facilitating the efficient removal of penicillin, streptomycin, and tetracycline hydrochloride from water. In the application of MCNs to treat these three kinds of residual antibiotics, the adsorption amounts of tetracycline hydrochloride were higher than penicillin and streptomycin, and the adsorption capacity was up to 880.6 mg/g. Moreover, high removal efficiency (99.6%) and excellent recyclability were achieved. The results demonstrate that MCN adsorbents have significant potential in the treatment of water contaminated with antibiotics.