Cargando…
Physics-Informed Data-Driven Prediction of 2D Normal Strain Field in Concrete Structures
Concrete exhibits time-dependent long-term behavior driven by creep and shrinkage. These rheological effects are difficult to predict due to their stochastic nature and dependence on loading history. Existing empirical models used to predict rheological effects are fitted to databases composed large...
Autores principales: | Pereira, Mauricio, Glisic, Branko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571844/ https://www.ncbi.nlm.nih.gov/pubmed/36236289 http://dx.doi.org/10.3390/s22197190 |
Ejemplares similares
-
Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring
por: Reilly, John, et al.
Publicado: (2018) -
Concise Historic Overview of Strain Sensors Used in the Monitoring of Civil Structures: The First One Hundred Years
por: Glisic, Branko
Publicado: (2022) -
Virtual Environments for Visualizing Structural Health Monitoring Sensor Networks, Data, and Metadata
por: Napolitano, Rebecca, et al.
Publicado: (2018) -
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
por: Yao, Yao, et al.
Publicado: (2015) -
Data-Driven Parameter Selection and Modeling for Concrete Carbonation
por: Duan, Kangkang, et al.
Publicado: (2022)