Cargando…
GAIN: A Gated Adaptive Feature Interaction Network for Click-Through Rate Prediction
CTR (Click-Through Rate) prediction has attracted more and more attention from academia and industry for its significant contribution to revenue. In the last decade, learning feature interactions have become a mainstream research direction, and dozens of feature interaction-based models have been pr...
Autores principales: | Liu, Yaoxun, Ma, Liangli, Wang, Muyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571864/ https://www.ncbi.nlm.nih.gov/pubmed/36236377 http://dx.doi.org/10.3390/s22197280 |
Ejemplares similares
-
A Dual Adaptive Interaction Click-Through Rate Prediction Based on Attention Logarithmic Interaction Network
por: Li, Shiqi, et al.
Publicado: (2022) -
Graph Attention Interaction Aggregation Network for Click-Through Rate Prediction
por: Zhang, Wei, et al.
Publicado: (2022) -
An adaptive hybrid XdeepFM based deep Interest network model for click-through rate prediction system
por: Lu, Qiao, et al.
Publicado: (2021) -
Advertising Click-Through Rate Prediction Based on CNN-LSTM Neural Network
por: Zhu, Danqing
Publicado: (2021) -
Retracted: Advertising Click-Through Rate Prediction Based on CNN-LSTM Neural Network
por: Intelligence and Neuroscience, Computational
Publicado: (2023)