Cargando…
Comparison of Structural Analysis of Thin-Walled Structures Accomplished by Isogeometric Analysis and the Finite Element Method
Isogeometric analysis (IGA) represents a relatively new method of problem-solving in engineering practice. A huge advantage of this method over the finite element method (FEM), is the reduction of the simulation execution time. Non-uniform rational B-splines (NURBS) allow the use of higher-order bas...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571941/ https://www.ncbi.nlm.nih.gov/pubmed/36233856 http://dx.doi.org/10.3390/ma15196516 |
Sumario: | Isogeometric analysis (IGA) represents a relatively new method of problem-solving in engineering practice. A huge advantage of this method over the finite element method (FEM), is the reduction of the simulation execution time. Non-uniform rational B-splines (NURBS) allow the use of higher-order basis functions, thus increasing the accuracy of the solution. This paper deals with the comparison of structural analysis of thin-walled structural elements using isogeometric analysis and the finite element method. The investigated objects are modelled using a single patch in MATLAB. The basic functions are created from NURBS, which were previously used in the creation of an accurate geometric model. The paper contains a comparison of the results obtained by the above-mentioned methods. All computations are performed in the elastic domain. |
---|