Cargando…
A Comparative Analysis between Efficient Attention Mechanisms for Traffic Forecasting without Structural Priors
Dot-product attention is a powerful mechanism for capturing contextual information. Models that build on top of it have acclaimed state-of-the-art performance in various domains, ranging from sequence modelling to visual tasks. However, the main bottleneck is the construction of the attention map, w...
Autores principales: | Rad, Andrei-Cristian, Lemnaru, Camelia, Munteanu, Adrian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9571981/ https://www.ncbi.nlm.nih.gov/pubmed/36236555 http://dx.doi.org/10.3390/s22197457 |
Ejemplares similares
-
Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
por: Zhang, Qingyong, et al.
Publicado: (2023) -
The changing accuracy of traffic forecasts
por: Hoque, Jawad Mahmud, et al.
Publicado: (2021) -
LLM Multimodal Traffic Accident Forecasting
por: de Zarzà, I., et al.
Publicado: (2023) -
Forecast of LHC-related traffic on the route de Meyrin.
por: Serge Dailler
Publicado: (1997) -
Data-driven analysis and forecasting of highway traffic dynamics
por: Avila, A. M., et al.
Publicado: (2020)