Cargando…
Impact of Label Noise on the Learning Based Models for a Binary Classification of Physiological Signal
Label noise is omnipresent in the annotations process and has an impact on supervised learning algorithms. This work focuses on the impact of label noise on the performance of learning models by examining the effect of random and class-dependent label noise on a binary classification task: quality a...
Autores principales: | Ding, Cheng, Pereira, Tania, Xiao, Ran, Lee, Randall J., Hu, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572105/ https://www.ncbi.nlm.nih.gov/pubmed/36236265 http://dx.doi.org/10.3390/s22197166 |
Ejemplares similares
-
Feature Selection on Elite Hybrid Binary Cuckoo Search in Binary Label Classification
por: Zhao, Maoxian, et al.
Publicado: (2021) -
Effects of Label Noise on Deep Learning-Based Skin Cancer Classification
por: Hekler, Achim, et al.
Publicado: (2020) -
Signal-to-noise in silicon microstrip detectors with binary readout
por: DeWitt, J, et al.
Publicado: (1994) -
Time Synchronization of Multimodal Physiological Signals through Alignment of Common Signal Types and Its Technical Considerations in Digital Health
por: Xiao, Ran, et al.
Publicado: (2022) -
Noise Robustness Low-Rank Learning Algorithm for Electroencephalogram Signal Classification
por: Gao, Ming, et al.
Publicado: (2021)