Cargando…

Tribological Aspects Concerning the Study of Overhead Crane Brakes

The aim of the study is the tribological analysis of the crane drum brakes. A theoretical analysis of the wear processes for brake lining was performed and the coefficient of friction under tribological conditions was determined experimentally simulating the operating conditions for three types of b...

Descripción completa

Detalles Bibliográficos
Autores principales: Ungureanu, Miorita, Medan, Nicolae, Ungureanu, Nicolae Stelian, Pop, Nicolae, Nadolny, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572129/
https://www.ncbi.nlm.nih.gov/pubmed/36233882
http://dx.doi.org/10.3390/ma15196549
Descripción
Sumario:The aim of the study is the tribological analysis of the crane drum brakes. A theoretical analysis of the wear processes for brake lining was performed and the coefficient of friction under tribological conditions was determined experimentally simulating the operating conditions for three types of brakes. The theoretical study of the wear was oriented towards of determining the lifetime of the brake lining. In the experimental determination of the coefficient of friction, the following parameters were taken into account: the contact pressure between the shoe and the drum; the initial speed of the brake drum; the humidity of the working environment; and the temperature of the drum-brake lining friction surfaces. After performing the experiments, a statistical analysis was conducted, that shows the amount the coefficient of friction is influenced by the previously mentioned parameters: the highest weight was humidity with a value of 35.58%, followed by temperature with a percentage of 23.95%, velocity with 4.54%, and lastly pressure with 4.19%. Furthermore, the equation that expresses the dependence between the coefficient of friction and the parameters is determined. We consider that the results obtained are important for brake manufacturers in order to improve braking efficiency and the safety of overhead cranes.