Cargando…

A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism

In this paper, we address the problems of fraud and anomalies in the Bitcoin network. These are common problems in e-banking and online transactions. However, as the financial sector evolves, so do the methods for fraud and anomalies. Moreover, blockchain technology is being introduced as the most s...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashfaq, Tehreem, Khalid, Rabiya, Yahaya, Adamu Sani, Aslam, Sheraz, Azar, Ahmad Taher, Alsafari, Safa, Hameed, Ibrahim A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572131/
https://www.ncbi.nlm.nih.gov/pubmed/36236255
http://dx.doi.org/10.3390/s22197162
Descripción
Sumario:In this paper, we address the problems of fraud and anomalies in the Bitcoin network. These are common problems in e-banking and online transactions. However, as the financial sector evolves, so do the methods for fraud and anomalies. Moreover, blockchain technology is being introduced as the most secure method integrated into finance. However, along with these advanced technologies, many frauds are also increasing every year. Therefore, we propose a secure fraud detection model based on machine learning and blockchain. There are two machine learning algorithms—XGboost and random forest (RF)—used for transaction classification. The machine learning techniques train the dataset based on the fraudulent and integrated transaction patterns and predict the new incoming transactions. The blockchain technology is integrated with machine learning algorithms to detect fraudulent transactions in the Bitcoin network. In the proposed model, XGboost and random forest (RF) algorithms are used to classify transactions and predict transaction patterns. We also calculate the precision and AUC of the models to measure the accuracy. A security analysis of the proposed smart contract is also performed to show the robustness of our system. In addition, an attacker model is also proposed to protect the proposed system from attacks and vulnerabilities.