Cargando…

Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress

Gac is a carotenoid-rich, healthful tropical fruit; however, its productivity is limited by soil salinity, a growing environmental stress. This study aimed to evaluate the effects of salinity stress on key physiological traits and metabolites in 30-day-old gac seedling leaves, treated with 0, 25-, 5...

Descripción completa

Detalles Bibliográficos
Autores principales: Jumpa, Thitiwan, Beckles, Diane M., Songsri, Patcharin, Pattanagul, Kunlaya, Pattanagul, Wattana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572180/
https://www.ncbi.nlm.nih.gov/pubmed/36235312
http://dx.doi.org/10.3390/plants11192447
_version_ 1784810549008138240
author Jumpa, Thitiwan
Beckles, Diane M.
Songsri, Patcharin
Pattanagul, Kunlaya
Pattanagul, Wattana
author_facet Jumpa, Thitiwan
Beckles, Diane M.
Songsri, Patcharin
Pattanagul, Kunlaya
Pattanagul, Wattana
author_sort Jumpa, Thitiwan
collection PubMed
description Gac is a carotenoid-rich, healthful tropical fruit; however, its productivity is limited by soil salinity, a growing environmental stress. This study aimed to evaluate the effects of salinity stress on key physiological traits and metabolites in 30-day-old gac seedling leaves, treated with 0, 25-, 50-, 100-, and 150-mM sodium chloride (NaCl) for four weeks to identify potential alarm, acclimatory, and exhaustion responses. Electrolyte leakage increased with increasing NaCl concentrations (p < 0.05) indicating loss of membrane permeability and conditions that lead to reactive oxygen species production. At 25 and 50 mM NaCl, superoxide dismutase (SOD) activity, starch content, and total soluble sugar increased. Chlorophyll a, and total chlorophyll increased at 25 mM NaCl but decreased at higher NaCl concentrations indicating salinity-induced thylakoid membrane degradation and chlorophyllase activity. Catalase (CAT) activity decreased (p < 0.05) at all NaCl treatments, while ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities were highest at 150 mM NaCl. GC-MS-metabolite profiling showed that 150 mM NaCl induced the largest changes in metabolites and was thus distinct. Thirteen pathways and 7.73% of metabolites differed between the control and all the salt-treated seedlings. Salinity decreased TCA cycle intermediates, and there were less sugars for growth but more for osmoprotection, with the latter augmented by increased amino acids. Although 150 mM NaCl level decreased SOD activity, the APX and GPX enzymes were still active, and some carbohydrates and metabolites also accumulated to promote salinity resistance via multiple mechanisms.
format Online
Article
Text
id pubmed-9572180
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95721802022-10-17 Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress Jumpa, Thitiwan Beckles, Diane M. Songsri, Patcharin Pattanagul, Kunlaya Pattanagul, Wattana Plants (Basel) Article Gac is a carotenoid-rich, healthful tropical fruit; however, its productivity is limited by soil salinity, a growing environmental stress. This study aimed to evaluate the effects of salinity stress on key physiological traits and metabolites in 30-day-old gac seedling leaves, treated with 0, 25-, 50-, 100-, and 150-mM sodium chloride (NaCl) for four weeks to identify potential alarm, acclimatory, and exhaustion responses. Electrolyte leakage increased with increasing NaCl concentrations (p < 0.05) indicating loss of membrane permeability and conditions that lead to reactive oxygen species production. At 25 and 50 mM NaCl, superoxide dismutase (SOD) activity, starch content, and total soluble sugar increased. Chlorophyll a, and total chlorophyll increased at 25 mM NaCl but decreased at higher NaCl concentrations indicating salinity-induced thylakoid membrane degradation and chlorophyllase activity. Catalase (CAT) activity decreased (p < 0.05) at all NaCl treatments, while ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) activities were highest at 150 mM NaCl. GC-MS-metabolite profiling showed that 150 mM NaCl induced the largest changes in metabolites and was thus distinct. Thirteen pathways and 7.73% of metabolites differed between the control and all the salt-treated seedlings. Salinity decreased TCA cycle intermediates, and there were less sugars for growth but more for osmoprotection, with the latter augmented by increased amino acids. Although 150 mM NaCl level decreased SOD activity, the APX and GPX enzymes were still active, and some carbohydrates and metabolites also accumulated to promote salinity resistance via multiple mechanisms. MDPI 2022-09-20 /pmc/articles/PMC9572180/ /pubmed/36235312 http://dx.doi.org/10.3390/plants11192447 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jumpa, Thitiwan
Beckles, Diane M.
Songsri, Patcharin
Pattanagul, Kunlaya
Pattanagul, Wattana
Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress
title Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress
title_full Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress
title_fullStr Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress
title_full_unstemmed Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress
title_short Physiological and Metabolic Responses of Gac Leaf (Momordica cochinchinensis (Lour.) Spreng.) to Salinity Stress
title_sort physiological and metabolic responses of gac leaf (momordica cochinchinensis (lour.) spreng.) to salinity stress
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572180/
https://www.ncbi.nlm.nih.gov/pubmed/36235312
http://dx.doi.org/10.3390/plants11192447
work_keys_str_mv AT jumpathitiwan physiologicalandmetabolicresponsesofgacleafmomordicacochinchinensisloursprengtosalinitystress
AT becklesdianem physiologicalandmetabolicresponsesofgacleafmomordicacochinchinensisloursprengtosalinitystress
AT songsripatcharin physiologicalandmetabolicresponsesofgacleafmomordicacochinchinensisloursprengtosalinitystress
AT pattanagulkunlaya physiologicalandmetabolicresponsesofgacleafmomordicacochinchinensisloursprengtosalinitystress
AT pattanagulwattana physiologicalandmetabolicresponsesofgacleafmomordicacochinchinensisloursprengtosalinitystress