Cargando…

Characterization of Synovial Fluid Components: Albumin-Chondroitin Sulfate Interactions Seen through Molecular Dynamics

The friction coefficient of articular cartilage (AC) is very low. A method of producing tailor-made materials with even similar lubrication properties is still a challenge. The physicochemical reasons for such excellent lubrication properties of AC are still not fully explained; however, a crucial f...

Descripción completa

Detalles Bibliográficos
Autores principales: Kruszewska, Natalia, Mazurkiewicz, Adam, Szala, Grzegorz, Słomion, Małgorzata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572199/
https://www.ncbi.nlm.nih.gov/pubmed/36234275
http://dx.doi.org/10.3390/ma15196935
Descripción
Sumario:The friction coefficient of articular cartilage (AC) is very low. A method of producing tailor-made materials with even similar lubrication properties is still a challenge. The physicochemical reasons for such excellent lubrication properties of AC are still not fully explained; however, a crucial factor seems to be synergy between synovial fluid (SF) components. As a stepping stone to being able to produce innovative materials characterized by a very low friction coefficient, we studied the interactions between two important components of SF: human serum albumin (HSA) and chondroitin sulfate (CS). The molecular dynamics method, preceded by docking, is used in the study. Interactions of HSA with two types of CS (IV and VI), with the addition of three types of ions often found in physiological solutions: Ca [Formula: see text] , Na [Formula: see text] , and Mg [Formula: see text] , are compared. It was found that there were differences in the energy of binding values and interaction maps between CS-4 and CS-6 complexes. HSA:CS-4 complexes were bound stronger than in the case of HSA:CS-6 because more interactions were formed across all types of interactions except one—the only difference was for ionic bridges, which were more often found in HSA:CS-6 complexes. RMSD and RMSF indicated that complexes HSA:CS-4 behave much more stably than HSA:CS-6. The type of ions added to the solution was also very important and changed the interaction map. However, the biggest difference was caused by the addition of Ca [Formula: see text] ions which were prone to form ionic bridges.