Cargando…
A Low-Cost, Low-Power Water Velocity Sensor Utilizing Acoustic Doppler Measurement
Current commercial sensors to monitor water flow velocities are expensive, bulky, and require significant effort to install. Low-cost sensors open the possibility of monitoring storm and waste water systems at a much greater spatial and temporal resolution without prohibitive costs and resource inve...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572237/ https://www.ncbi.nlm.nih.gov/pubmed/36236550 http://dx.doi.org/10.3390/s22197451 |
Sumario: | Current commercial sensors to monitor water flow velocities are expensive, bulky, and require significant effort to install. Low-cost sensors open the possibility of monitoring storm and waste water systems at a much greater spatial and temporal resolution without prohibitive costs and resource investment. To aid in this, this work developed a low-cost, low-power velocity sensor based on acoustic Doppler velocimetry. The sensor, costing less than 50 USD is open-source, open-hardware, compact, and easily interfaceable to a wide range of data-logging systems. A freely available sensor design at this price point does not currently exist, and its novelty is in enabling high-resolution real-time monitoring schemes. The design is capable of measuring water velocities up to 1200 mm/s. The sensor is characterised and then verified in an in-field long-term test. Finally, the data from this test are then used to evaluate the performance of the sensor in a real-world scenario. The analysis concludes that the sensor is capable of effectively measuring water velocity. |
---|