Cargando…
Deep Learning-Based Remaining Useful Life Estimation of Bearings with Time-Frequency Information
In modern industrial production, the prediction ability of remaining useful life of bearings directly affects the safety and stability of the system. Traditional methods require rigorous physical modeling and perform poorly for complex systems. In this paper, an end-to-end remaining useful life pred...
Autores principales: | Liu, Bingguo, Gao, Zhuo, Lu, Binghui, Dong, Hangcheng, An, Zeru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9572251/ https://www.ncbi.nlm.nih.gov/pubmed/36236501 http://dx.doi.org/10.3390/s22197402 |
Ejemplares similares
-
Deep learning-based anomaly-onset aware remaining useful life estimation of bearings
por: Kamat, Pooja Vinayak, et al.
Publicado: (2021) -
Transfer-Learning-Based Estimation of the Remaining Useful Life of Heterogeneous Bearing Types Using Low-Frequency Accelerometers
por: Schwendemann, Sebastian, et al.
Publicado: (2023) -
Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time–Frequency-Based Features and Deep Learning Models
por: Sayyad, Sameer, et al.
Publicado: (2023) -
Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold
por: Li, Jiahui, et al.
Publicado: (2023) -
Data-Driven Method for Predicting Remaining Useful Life of Bearing Based on Bayesian Theory
por: Gao, Tianhong, et al.
Publicado: (2020)